Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunable plasmonic lattices of silver nanocrystals

Abstract

Silver nanocrystals are ideal building blocks for plasmonic materials that exhibit a wide range of unique and potentially useful optical phenomena. Individual nanocrystals display distinct optical scattering spectra and can be assembled into hierarchical structures that couple strongly to external electromagnetic fields. This coupling, which is mediated by surface plasmons, depends on the shape and arrangement of the nanocrystals. Here we demonstrate the bottom-up assembly of polyhedral silver nanocrystals into macroscopic two-dimensional superlattices using the Langmuir–Blodgett technique. Our ability to control interparticle spacing, density and packing symmetry allows for tunability of the optical response over the entire visible range. This assembly strategy offers a new, practical approach to making novel plasmonic materials for application in spectroscopic sensors, subwavelength optics and integrated devices that utilize field-enhancement effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Novel superlattice architectures composed of different polyhedral building blocks.
Figure 2: Tunable plasmon response of a Ag cuboctahedra superlattice as a function of surface pressure.
Figure 3: Evolution of the plasmon response for the NC arrays with increasing surface pressures.
Figure 4: Optical response of Ag NC oligomers.

Similar content being viewed by others

References

  1. Emory, S. R. & Nie, S. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  Google Scholar 

  2. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667 (1997).

    Article  CAS  Google Scholar 

  3. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  CAS  Google Scholar 

  4. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  CAS  Google Scholar 

  5. Degiron, A. & Ebbesen, T. W. The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J. Opt. A 7, S90–S96 (2005).

    Article  Google Scholar 

  6. Gao, H., Henzie, J. & Odom, T. W. Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett. 6, 2104–2108 (2006).

    Article  CAS  Google Scholar 

  7. van der Molen, K. L., Segerink, F. B., van Hulst, N. F. & Kuipers, L. Influence of hole size on the extraordinary transmission through subwavelength hole arrays. Appl. Phys. Lett. 85, 4316–4318 (2004).

    Article  CAS  Google Scholar 

  8. Koerkamp, K. J. K., Enoch, S., Segerink, F. B., van Hulst, N. F. & Kuipers, L. Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys. Rev. Lett. 92, 183901 (2004).

    Article  Google Scholar 

  9. Kwak, E.-S. et al. Surface plasmon standing waves in large-area subwavelength hole arrays. Nano Lett. 5, 1963–1967 (2005).

    Article  CAS  Google Scholar 

  10. Fischer, U. C. & Zingsheim, H. P. Submicroscopic pattern replication with visible light. J. Vac. Sci. Technol. 19, 881–885 (1981).

    Article  CAS  Google Scholar 

  11. Li, C., Kattawar, G. W. & Yang, P. Effects of surface roughness on light scattering by small particles. J. Quantum Spectrosc. Radiat. Transfer 89, 123 (2004).

    Article  CAS  Google Scholar 

  12. Hicks, E. M. et al. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett. 5, 1065–1070 (2005).

    Article  CAS  Google Scholar 

  13. Garcia-Vidal, F. J. & Pendry, J. B. Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett. 77, 1163–1166 (1996).

    Article  CAS  Google Scholar 

  14. Genov, D. A., Sarychev, A. K., Shalaev, V. M. & Wei, A. Resonant field enhancements from metal nanoparticle arrays. Nano Lett. 4, 153–158 (2004).

    Article  CAS  Google Scholar 

  15. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  Google Scholar 

  16. Xia, Y. & Whitesides, G. M. Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998).

    Article  CAS  Google Scholar 

  17. Manoharan, V. N., Elsesser, M. T. & Pine, D. J. Dense packing and symmetry in small clusters of microspheres. Science 301, 483–487 (2003).

    Article  CAS  Google Scholar 

  18. Narayanan, S. & Wang, J. Dynamical self-assembly of nanocrystal superlattices during colloidal droplet evaporation by in situ small angle X-ray scattering. Phys. Rev. Lett. 93, 135501 (2004).

    Article  Google Scholar 

  19. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  20. Sonnichsen, C., Reinhard, B. M., Liphardt, J. & Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 23, 741–745 (2005).

    Article  Google Scholar 

  21. Andrea Schroedter, H. W. Ligand design and bioconjugation of colloidal gold nanoparticles. Angew. Chem. Int. Edn 41, 3218–3221 (2002).

    Article  Google Scholar 

  22. Warner, M. G. & Hutchison, J. E. Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nature Mater. 2, 272 (2003).

    Article  CAS  Google Scholar 

  23. Freeman, R. G. et al. Self-assembled metal colloid monolayers: An approach to SERS substrates. Science 267, 1629–1632 (1995).

    Article  CAS  Google Scholar 

  24. Maxwell, D. J., Emory, S. R. & Nie, S. Nanostructued thin-film materials with surface-enhanced optical properties. Chem. Mater. 13, 1082–1088 (2001).

    Article  CAS  Google Scholar 

  25. Musick, M. D., Keating, C. D., Keefe, M. H. & Natan, M. J. Stepwise construction of conductive Au colloid multilayers from solution. Chem. Mater. 9, 1499–1501 (1997).

    Article  CAS  Google Scholar 

  26. Tao, A. R., Sinsermsuksakul, P. & Yang, P. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Edn 45, 4597–4601 (2006).

    Article  CAS  Google Scholar 

  27. Dumestre, F., Chaudret, B., Amiens, C., Renaud, P. & Fejes, P. Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)2]2 . Science 303, 821–823 (2004).

    Article  CAS  Google Scholar 

  28. Lee, J. S., Lee, Y., Tae, E. L., Park, Y. S. & Yoon, K. B . Synthesis of zeolite as ordered multicrystal arrays. Science 301, 818–821 (2003).

    Article  CAS  Google Scholar 

  29. Sun, T. & King, H. E. Jr. Aggregation behavior in the semidilute poly(N-vinyl-2-pyrrolidone)/water system. Macromolecules 29, 3175–3181 (1996).

    Article  CAS  Google Scholar 

  30. Quinten, M. & Kreibig, U. Optical properties of aggregates of small metal particles. Surf. Sci. 172, 557–577 (1986).

    Article  CAS  Google Scholar 

  31. Romero, I., Aizpurua, J., Bryant, G. W. & de Abajo, F. J. G. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt. Express 14, 9988–9999 (2006).

    Article  Google Scholar 

  32. Seal, K. et al. Near-field intensity correlations in semicontinuous metal–dielectric films. Phys. Rev. Lett. 94, 226101 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Basic Science, Department of Energy. A.R.T. acknowledges the National Science Foundation for a graduate research fellowship. We thank the National Center for Electron Microscopy for the use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peidong Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1–S3 (PDF 196 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, A., Sinsermsuksakul, P. & Yang, P. Tunable plasmonic lattices of silver nanocrystals. Nature Nanotech 2, 435–440 (2007). https://doi.org/10.1038/nnano.2007.189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing