Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prefrontal interactions reflect future task operations

Abstract

When task instructions are given, the human brain establishes a task set before the task is actually performed. By introducing a delay between the instruction and the task, we have identified the neural correlates of task sets using functional magnetic resonance imaging (fMRI). Subjects were instructed to remember a sequence of positions or letters, either in the order presented or in the reverse order. Spatial or verbal processing areas were active during the delay, depending on whether positions or letters were to be remembered, whereas the anterior region of the prefrontal cortex (PFC) was active regardless of the domain of the items. Furthermore, the nature of the interaction between the anterior PFC and the domain-specific posterior prefrontal areas (superior frontal sulcus and left inferior frontal gyrus) depended on whether the items were to be remembered in the forward or backward order. Thus we have identified inter-regional interactions that reflect preparation for task performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioral paradigm.
Figure 2: Areas with sustained activation during the instruction delay.
Figure 3: Peaks of pre-task activity and their time course of activation.
Figure 4: Time course of activation collapsed across trials with different length of delay.
Figure 5: Correlation of activation during the instruction delay.
Figure 6: Time course of changes in the correlation.

Similar content being viewed by others

References

  1. Rogers, R.D. & Monsell, S. Costs of a predictable switch between simple cognitive tasks. J. Exp. Psychol. Gen. 124, 207–231 (1995).

    Article  Google Scholar 

  2. Corbetta, M. & Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    Article  CAS  Google Scholar 

  3. Wilson, F.A., Scalaidhe, S.P. & Goldman-Rakic, P.S. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260, 1955–1958 (1993).

    Article  CAS  Google Scholar 

  4. O'Scalaidhe, S.P., Wilson, F.A. & Goldman-Rakic, P.S. Areal segregation of face-processing neurons in prefrontal cortex. Science 278, 1135–1138 (1997).

    Article  CAS  Google Scholar 

  5. Ungerleider, L.G., Courtney, S.M. & Haxby, J.V. A neural system for human visual working memory. Proc. Natl. Acad. Sci. USA 95, 883–890 (1998).

    Article  CAS  Google Scholar 

  6. Kurata, K. & Wise, S.P. Premotor cortex of rhesus monkeys: set-related activity during two conditional motor tasks. Exp. Brain Res. 69, 327–343 (1988).

    Article  CAS  Google Scholar 

  7. Crammond, D.J. & Kalaska, J.F. Prior information in motor and premotor cortex: activity during the delay period and effect on pre-movement activity. J. Neurophysiol. 84, 986–1005 (2000).

    Article  CAS  Google Scholar 

  8. Calton, J.L., Dickinson, A.R. & Snyder, L.H. Non-spatial, motor-specific activation in posterior parietal cortex. Nat. Neurosci. 5, 580–588 (2002).

    Article  CAS  Google Scholar 

  9. Schlag-Rey, M., Amador, N., Sanchez, H. & Schlag, J. Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature 390, 398–401 (1997).

    Article  CAS  Google Scholar 

  10. MacDonald, A.W., Cohen, J.D., Stenger, V.A. & Carter, C.S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000).

    Article  CAS  Google Scholar 

  11. Sakai, K., Rowe, J.B. & Passingham, R.E. Active maintenance in prefrontal area 46 creates distractor-resistant memory. Nat. Neurosci. 5, 479–484 (2002).

    Article  CAS  Google Scholar 

  12. Asaad, W.F., Rainer, G. & Miller, E.K. Task-specific neural activity in the primate prefrontal cortex. J. Neurophysiol. 84, 451–459 (2000).

    Article  CAS  Google Scholar 

  13. Wallis, J.D., Anderson, K.C. & Miller, E.K. Single neurons in prefrontal cortex encode abstract rules. Nature 411, 953–956 (2001).

    Article  CAS  Google Scholar 

  14. Kastner, S., Pinsk, M.A., de Weerd, P., Desimone, R. & Ungerleider, L.G. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751–761 (1999).

    Article  CAS  Google Scholar 

  15. Düzel, E. et al. Task-related and item-related brain processes of memory retrieval. Proc. Natl. Acad. Sci. USA 96, 1794–1799 (1999).

    Article  Google Scholar 

  16. Lepage, M., Ghaffar, O., Nyberg, L. & Tulving, E. Prefrontal cortex and episodic memory retrieval mode. Proc. Natl. Acad. Sci. USA 97, 506–511 (2000).

    Article  CAS  Google Scholar 

  17. Rugg, M.D. & Wilding, E.L. Retrieval processing and episodic memory. Trends Cogn. Sci. 4, 108–115 (2000).

    Article  CAS  Google Scholar 

  18. Rushworth, M.F.S., Passingham, R.E. & Nobre, A.C. Components of switching intentional set. J. Cogn. Neurosci. (in press).

  19. Owen, A.M. et al. Redefining the functional organization of working memory processes within human lateral prefrontal cortex. Eur. J. Neurosci. 11, 567–574 (1999).

    Article  CAS  Google Scholar 

  20. Postle, B.R., Berger, J.S. & D'Esposito, M. Functional neuroanatomical double dissociation of mnemonic and executive control processes contributing to working memory performance. Proc. Natl. Acad. Sci. USA 96, 12959–12964 (1999).

    Article  CAS  Google Scholar 

  21. Rowe, J.B., Toni, I., Josephs, O., Frackowiak, R.S.J. & Passingham, R.E. The prefrontal cortex: response selection or maintenance within working memory? Science 288, 1656–1660 (2000).

    Article  CAS  Google Scholar 

  22. Leung, H.C., Gore, J.C. & Goldman-Rakic, P.S. Sustained mnemonic response in the human middle frontal gyrus during on-line storage of spatial memoranda. J. Cogn. Neurosci. 14, 659–671 (2002).

    Article  Google Scholar 

  23. Wylie, G. & Allport, A. Task switching and the measurement of 'switch costs'. Psychol. Res. 63, 212–233 (2000).

    Article  CAS  Google Scholar 

  24. Meiran, N., Chorev, Z. & Sapir, A. Component processes in task switching. Cognit. Psychol. 41, 211–253 (2000).

    Article  CAS  Google Scholar 

  25. Rogers, R.D. et al. Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson's disease. Brain 121, 815–842 (1998).

    Article  Google Scholar 

  26. Shallice, T. & Burgess, P.W. Deficits in strategy application following frontal lobe damage in man. Brain 114, 727–741 (1991).

    Article  Google Scholar 

  27. Burgess, P.W., Veitch, E., de Lacy Costello, A. & Shallice, T. The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia 38, 848–863 (2000).

    Article  CAS  Google Scholar 

  28. Duncan, J., Emslie, H., Williams, P., Johnson, R. & Freer, C. Intelligence and the frontal lobe: the organization of goal-directed behavior. Cognit. Psychol. 30, 257–303 (1996).

    Article  CAS  Google Scholar 

  29. Pochon, J.-B. et al. The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: an fMRI study. Cereb. Cortex 11, 260–266 (2001).

    Article  CAS  Google Scholar 

  30. Baker, S.C. et al. Neural systems engaged by planning: a PET study of the Tower of London task. Neuropsychologia 34, 515–526 (1996).

    Article  CAS  Google Scholar 

  31. Dagher, A., Owen, A.M., Boecker, H. & Brooks, D.J. Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain, 122, 1973–1987 (1999).

    Article  Google Scholar 

  32. Burgess, P.W., Quayle, A. & Frith, C.D. Brain regions involved in prospective memory as determined by positron emission tomography. Neuropsychologia 39, 545–555 (2001).

    Article  CAS  Google Scholar 

  33. Christoff, K. & Gabrieli, J.D. The frontopolar cortex and human cognition: evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology 28, 168–186 (2000).

    Google Scholar 

  34. Fletcher, P.C. & Henson, R.N.A. Frontal lobes and human memory. Brain 124, 849–881 (2001).

    Article  CAS  Google Scholar 

  35. Friston, K.J., Holmes, A.P., Price, C.J., Büchel, C. & Worsley, K.J. Multisubject fMRI studies and conjunction analyses. Neuroimage 10, 385–396 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Wellcome Trust. K.S. was supported by the Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuyuki Sakai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, K., Passingham, R. Prefrontal interactions reflect future task operations. Nat Neurosci 6, 75–81 (2003). https://doi.org/10.1038/nn987

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn987

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing