Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Connecting cortex to machines: recent advances in brain interfaces

Abstract

Recent technological and scientific advances have generated wide interest in the possibility of creating a brain–machine interface (BMI), particularly as a means to aid paralyzed humans in communication. Advances have been made in detecting neural signals and translating them into command signals that can control devices. We now have systems that use externally derived neural signals as a command source, and faster and potentially more flexible systems that directly use intracortical recording are being tested. Studies in behaving monkeys show that neural output from the motor cortex can be used to control computer cursors almost as effectively as a natural hand would carry out the task. Additional research findings explore the possibility of using computers to return behaviorally useful feedback information to the cortex. Although significant scientific and technological challenges remain, progress in creating useful human BMIs is accelerating.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The organization of a brain–machine interface (BMI).
Figure 2: Examples of intracortical electrode arrays under development.

Similar content being viewed by others

References

  1. Marg, E. & Adams, J.E. Indwelling multiple micro-electrodes in the brain. Electroencephalogr. Clin. Neurophysiol. 23, 277–280 (1967).

    Article  CAS  Google Scholar 

  2. Evarts, E.V. Pyramidal tract activity associated with a conditioned hand movement in the monkey. J. Neurophysiol. 29, 1011–1027 (1966).

    Article  CAS  Google Scholar 

  3. Cooper, I.S. Twenty-five years of experience with physiological neurosurgery. Neurosurgery 9, 190–200 (1981).

    Article  CAS  Google Scholar 

  4. Delgado, J.M. Physical Control of the Mind (Harper and Rowe, New York, 1969).

    Google Scholar 

  5. Benabid, A.L. et al. Deep brain stimulation for Parkinson's disease. Adv. Neurol. 86, 405–412 (2001).

    CAS  PubMed  Google Scholar 

  6. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G. & Vaughan, T.M. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2001).

    Article  Google Scholar 

  7. Pesaran, B., Pezaris, J.S., Sahani, M., Mitra, P.P. & Andersen, R.A. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat. Neurosci. 5, 805–811 (2002).

    Article  CAS  Google Scholar 

  8. Donoghue, J.P., Sanes, J.N., Hatsopoulos, N.G. & Gaal, G. Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. J. Neurophysiol. 79, 159–173 (1998).

    Article  CAS  Google Scholar 

  9. Moxon, K.A., Morizio, J., Chapin, J.K., Nicolelis, M.A. & Wolf, P.D. in Neural Prostheses for Restoration of Sensory and Motor Function (eds. Chapin, J. K. & Moxon, K. A.) 179–219 (CRC Press, Boca Raton, Florida, 2000).

    Google Scholar 

  10. Palmer, C. A microwire technique for recording single neurons in unrestrained animals. Brain Res. Bull. 3, 285–289 (1978).

    Article  CAS  Google Scholar 

  11. Bai, Q. & Wise, K.D. Single-unit neural recording with active microelectrode arrays. IEEE Trans. Biomed. Eng. 48, 911–920 (2001).

    Article  CAS  Google Scholar 

  12. Maynard, E.M., Nordhausen, C.T. & Normann, R.A. The Utah Intracortical Electrode Array: a recording structure for potential brain-computer interfaces. Electroencephalogr. Clin. Neurophysiol. 102, 228–239 (1997).

    Article  CAS  Google Scholar 

  13. Rousche, P.J. et al. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans. Biomed. Eng. 48, 361–371 (2001).

    Article  CAS  Google Scholar 

  14. Nicolelis, M.A.L. Actions from thoughts. Nature 409, 403–407 (2001).

    Article  CAS  Google Scholar 

  15. Maynard, E.M. et al. Neuronal interactions improve cortical population coding of movement direction. J. Neurosci. 19, 8083–8093 (1999).

    Article  CAS  Google Scholar 

  16. Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R. & Donoghue, J.P. Instant neural control of a movement signal. Nature 416, 141–142 (2002).

    Article  CAS  Google Scholar 

  17. Kennedy, P.R., Bakay, R.A., Moore, M.M., Adams, K. & Goldwaithe, J. Direct control of a computer from the human central nervous system. IEEE Trans Rehabil. Eng. 2, 198–202 (2000).

    Article  Google Scholar 

  18. Humphrey, D.R., Schmidt, E.M. & Thompson, W.D. Predicting measures of motor performance from multiple cortical spike trains. Science 170, 758–762 (1970).

    Article  CAS  Google Scholar 

  19. Georgopoulos, A.P. Population activity in the control of movement. Int. Rev. Neurobiol. 37, 103–119 (1994).

    Article  CAS  Google Scholar 

  20. Taylor, D.M., Tillery, S.I. & Schwartz, A.B. Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829–1832 (2002).

    Article  CAS  Google Scholar 

  21. Wessberg, J. et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408, 361–365 (2000).

    Article  CAS  Google Scholar 

  22. Gao, Y., Black, M.J., Bienenstock, E., Shoham, S. & Donoghue, J. Probabilistic inference of hand motion from neural activity in motor cortex. Proc. Adv. Neural Info. Processing Systems 14, The MIT Press, 2002.

  23. Romo, R., Hernandez, A., Zainos, A., Brody, C.D. & Lemus, L. Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron 26, 273–278 (2000).

    Article  CAS  Google Scholar 

  24. Talwar, S.K. et al. Rat navigation guided by remote control. Nature 417, 37–38 (2002).

    Article  CAS  Google Scholar 

  25. Wickersham, I. & Groh, J.M. Neurophysiology: electrically evoking sensory experience. Curr. Biol. 8, R412–R414 (1998).

    Article  CAS  Google Scholar 

  26. Dobelle, W.H. Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J. 46, 3–9 (2000).

    Article  CAS  Google Scholar 

  27. Hambrecht, F.T. Visual prostheses based on direct interfaces with the visual system. Baillieres Clin. Neurol. 4, 147–165 (1995).

    CAS  PubMed  Google Scholar 

  28. Maynard, E.M. Visual prostheses. Annu. Rev. Biomed. Eng. 3, 145–168 (2001).

    Article  CAS  Google Scholar 

  29. Normann, R.A., Maynard, E.M., Rousche, P.J. & Warren, D.J. A neural interface for a cortical vision prosthesis. Vision Res. 39, 2577–2587 (1999).

    Article  CAS  Google Scholar 

  30. Schmidt, E.M. et al. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119, 507–522 (1996).

    Article  Google Scholar 

  31. Bauby, J.-D. The Diving-Bell and the Butterfly (Knopf, New York, 1997).

    Google Scholar 

  32. Mauritz, K.H. & Peckham, H.P. Restoration of grasping functions in quadriplegic patients by functional electrical stimulation (FES). Int. J. Rehabil. Res. 10 (Suppl. 5) 57–61 (1987).

    Article  CAS  Google Scholar 

  33. Lauer, R.T., Peckham, P.H. & Kilgore, K.L. EEG-based control of a hand grasp neuroprosthesis. Neuroreport 10, 1767–1777 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge support from the NIH/NINDS, DARPA and the Keck Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author is a cofounder and shareholder in Cyberkinetics, Inc., a company that is developing neural prosthetic devices.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donoghue, J. Connecting cortex to machines: recent advances in brain interfaces. Nat Neurosci 5 (Suppl 11), 1085–1088 (2002). https://doi.org/10.1038/nn947

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn947

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing