Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Miracles and molecules—progress in spinal cord repair

Abstract

Severe spinal cord injury (SCI) leads to devastating loss of neurological function below the level of injury and adversely affects multiple body systems. Most basic research on SCI is designed to find ways to improve the unsatisfactory cellular and molecular responses of spinal cord to injury, which include an array of early processes of autodestruction and a subsequent lack of functional tissue repair. This research has brought us to the threshold of practical application along three lines of approach, derived from animal model studies: acute neuroprotection, enhanced axonal regeneration or plasticity, and treatment of demyelination. There is a growing commercial interest in this previously neglected therapeutic area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Allen, A.R. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column: a preliminary report. JAMA 57, 878–880 (1911).

    Article  Google Scholar 

  2. Bracken, M.B. et al. Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the third National Acute Spinal Cord Injury randomized controlled trial. J. Neurosurg. 89, 699–706 (1998).

    Article  CAS  Google Scholar 

  3. Hall, E.D. The neuroprotective pharmacology of methylprednisolone. J. Neurosurg. 76, 13–22 (1992).

    Article  CAS  Google Scholar 

  4. Geisler, F., Coleman, W., Grieco, G., Poonian, D. & Group, S.S. The Sygen multicenter acute spinal cord injury study. Spine 15, S87–S98 (2001).

    Article  Google Scholar 

  5. Geisler, F.H., Dorsey, F.C. & Coleman, W.P. Recovery of motor function after spinal cord injury—a randomized, placebo-controlled trial with GM-1 ganglioside. New Engl. J. Med. 324, 1829–1838 (1991).

    Article  CAS  Google Scholar 

  6. Rapalino, O. et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med. 4, 814–821 (1998).

    Article  CAS  Google Scholar 

  7. Ramón y Cajal, S. Degeneration and Regeneration of the Nervous System (Oxford Univ. Press, London, 1928).

    Google Scholar 

  8. Caroni, P. & Schwab, M.E. Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J. Cell Biol. 106, 1281–1288 (1988).

    Article  CAS  Google Scholar 

  9. Schnell, L. & Schwab, M.E. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343, 269–272 (1990).

    Article  CAS  Google Scholar 

  10. Thallmair, M. et al. Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions. Nat. Neurosci. 1, 124–131 (1998).

    Article  CAS  Google Scholar 

  11. GrandPre, T., Li, S. & Strittmatter, S. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417, 547–551 (2002).

    Article  CAS  Google Scholar 

  12. Wang, K. et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417, 941–944 (2002).

    Article  CAS  Google Scholar 

  13. Liu, B., Fournier, A., GrandpPre, T. & Strittmatter, S. Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297, 1190–1193 (2002).

    Article  CAS  Google Scholar 

  14. Snow, D.M., Lemmon, V., Carrino, D.A., Caplan, A.I. & Silver, J. Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp. Neurol. 109, 111–130 (1990).

    Article  CAS  Google Scholar 

  15. Bradbury, E. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002).

    Article  CAS  Google Scholar 

  16. Borgens, R. et al. An imposed oscillating electrical field improves the recovery of function in neurologically complete paraplegic dogs. J. Neurotrauma 16, 639–657 (1999).

    Article  CAS  Google Scholar 

  17. Benowitz, L.I., Goldberg, D.E., Madsen, J.R., Soni, D. & Irwin, N. Inosine stimulates extensive axon collateral growth in the rat corticospinal tract after injury. Proc. Natl. Acad. Sci. USA 96, 13486–13490 (1999).

    Article  CAS  Google Scholar 

  18. Cai, D. et al. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J. Neurosci. 21, 4731–4739 (2001).

    Article  CAS  Google Scholar 

  19. Qiu, J. et al. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34, 895–903 (2002).

    Article  CAS  Google Scholar 

  20. Lehmann, M. et al. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J. Neurosci. 19, 7537–7547 (1999).

    Article  CAS  Google Scholar 

  21. Grill, R., Murai, K., Blesch, A., Gage, F.H. & Tuszynski, M.H. Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J. Neurosci. 17, 5560–5572 (1997).

    Article  CAS  Google Scholar 

  22. Wirth, E.D. 3rd. et al. Feasibility and safety of neural tissue transplantation in patients with syringomyelia. J. Neurotrauma 18, 911–929 (2001).

    Article  Google Scholar 

  23. Gledhill, R.F., Harrison, B.M. & McDonald, W.I. Demyelination and remyelination after acute spinal cord compression. Exp. Neurol. 38, 472–487 (1973).

    Article  CAS  Google Scholar 

  24. Blight, A.R. Axonal physiology of chronic spinal cord injury in the cat: intracellular recording in vitro. Neuroscience 10, 1471–1486 (1983).

    Article  CAS  Google Scholar 

  25. Crowe, M.J., Bresnahan, J.C., Shuman, S.L., Masters, J.N. & Beattie, M.S. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat. Med. 3, 73–76 (1997).

    Article  CAS  Google Scholar 

  26. Shi, R. & Blight, A.R. Differential effects of low and high concentrations of 4-aminopyridine on axonal conduction in normal and injured spinal cord. Neuroscience 77, 553–562 (1997).

    Article  CAS  Google Scholar 

  27. Potter, P.J. et al. Randomized double-blind crossover trial of fampridine-SR (sustained release 4-aminopyridine) in patients with incomplete spinal cord injury. J. Neurotrauma 15, 837–849 (1998).

    Article  CAS  Google Scholar 

  28. Franklin, R. Remyelination of the demyelinated CNS: the case for and against transplantation of central, peripheral and olfactory glia. Brain Res. Bull. 57, 827–832 (2002).

    Article  Google Scholar 

  29. Ramón-Cueto, A., Plant, G.W., Avila, J. & Bunge, M.B. Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia. J. Neurosci. 18, 3803–3815 (1998).

    Article  Google Scholar 

  30. Blight, A.R. in Neurotrauma (eds. Narayan, R. K., Wilberger, J. E. & Povlishock, J. T.) 1367–1379 (McGraw-Hill, New York, 1996).

    Google Scholar 

  31. Wernig, A., Nanassy, A. & Muller, S. Laufband (treadmill) therapy in incomplete paraplegia and tetraplegia. J. Neurotrauma 16, 719–726 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blight, A. Miracles and molecules—progress in spinal cord repair. Nat Neurosci 5 (Suppl 11), 1051–1054 (2002). https://doi.org/10.1038/nn939

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn939

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing