Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Active maintenance in prefrontal area 46 creates distractor-resistant memory

Abstract

How does the brain maintain information in working memory while challenged by incoming distractions? Using functional magnetic resonance imaging (fMRI), we measured human brain activity during the memory delay of a spatial working memory task with distraction. We found that, in the prefrontal cortex (PFC), the magnitude of activity sustained throughout the memory delay was significantly higher on correct trials than it was on error trials. By contrast, the magnitude of sustained activity in posterior areas did not differ between correct and error trials. The correlation of activity between posterior areas was, however, associated with correct memory performance after distraction. On the basis of these findings, we propose that memory representations gain resistance against distraction during a period of active maintenance within working memory. This may be mediated by interactions between prefrontal and posterior areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of a distractor-plus trial.
Figure 2: Sustained activation during the memory delay.
Figure 3: Time course of activation for correct and error trials.
Figure 4: Correlation of activation.
Figure 5: Increased accuracy of memory performance as a function of activity in prefrontal area 46 for distractor-plus trials (filled circles).

Similar content being viewed by others

References

  1. D'Esposito, M. & Postle, B. R. The dependence of span and delayed-response performance on prefrontal cortex. Neuropsychologia 37, 1303–1315 (1999).

    Article  CAS  Google Scholar 

  2. Miller, E. K., Erickson, C. A. & Desimone, R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16, 5154–5167 (1996).

    Article  CAS  Google Scholar 

  3. Fuster, J. M. Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J. Neurophysiol. 36, 61–78 (1973).

    Article  CAS  Google Scholar 

  4. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349 (1989).

    Article  CAS  Google Scholar 

  5. Chafee, M. V. & Goldman-Rakic, P. S. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J. Neurophysiol. 79, 2919–2940 (1998).

    Article  CAS  Google Scholar 

  6. Sawaguchi, T. & Yamane, I. Properties of delay-period neuronal activity in the monkey dorsolateral prefrontal cortex during a spatial delayed matching-to-sample task. J. Neurophysiol. 82, 2070–2080 (1999).

    Article  CAS  Google Scholar 

  7. Miller, E. K., Li, L. & Desimone, R. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J. Neurophysiol. 13, 1460–1478 (1993).

    CAS  Google Scholar 

  8. Constantinidis, C. & Steinmetz, M. A. Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task. J. Neurophysiol. 76, 1352–1355 (1996).

    Article  CAS  Google Scholar 

  9. Compte, A., Brunel, N., Goldman-Rakic, P.S. & Wang, X. J. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10, 910–923 (2000).

    Article  CAS  Google Scholar 

  10. Smyth, M. M. Interference with rehearsal in spatial working memory in the absence of eye movements. Q. J. Exp. Psychol. A 49, 940–949 (1996).

    Article  CAS  Google Scholar 

  11. Awh, E. & Jonides, J. Overlapping mechanisms of attention and spatial working memory. Trends Cogn. Sci. 5, 119–126 (2001).

    Article  CAS  Google Scholar 

  12. Rajkowska, G. & Goldman-Rakic, P. S. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: variability in locations of areas 9 and 46 and relationship to the Talairach coordinate system. Cereb. Cortex 5, 323–337 (1995).

    Article  CAS  Google Scholar 

  13. Kojima, S. & Goldman-Rakic, P. S. Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response. Brain Res. 248, 43–49 (1982).

    Article  CAS  Google Scholar 

  14. Funahashi, S., Inoue, M. & Kubota, K. Delay-period activity in the primate prefrontal cortex encoding multiple spatial positions and their order of presentation. Behav. Brain Res. 84, 203–223 (1997).

    Article  CAS  Google Scholar 

  15. Petrides, M. & Pandya, D. N. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 228, 105–116 (1984).

    Article  CAS  Google Scholar 

  16. Cavada, C. & Goldman-Rakic, P. S. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 287, 422–445 (1989).

    Article  CAS  Google Scholar 

  17. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  Google Scholar 

  18. Chao, L. L. & Knight, R. T. Human prefrontal lesions increase distractibility to irrelevant sensory inputs. Neuroreport 6, 1605–1610 (1995).

    Article  CAS  Google Scholar 

  19. Guillery, R. W., Feig, S. L., & Lozsadi, D. A. Paying attention to the thalamic reticular nucleus. Trends Neurosci. 21, 28–32 (1998).

    Article  CAS  Google Scholar 

  20. D'Esposito, M., Postle, B. R., Jonides, J. & Smith, E. E. The neural substrate and temporal dynamic of interference effects in working memory as revealed by event-related functional MRI. Proc. Natl. Acad. Sci. USA 96, 7514–7519 (1999).

    Article  CAS  Google Scholar 

  21. Bunge, S. A., Ochsner, K. N., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. E. Prefrontal regions involved in keeping information in and out of mind. Brain 124, 2074–2086 (2001).

    Article  CAS  Google Scholar 

  22. Rogers, R. D. & Monsell, S. Costs of a predictable switch between simple cognitive tasks. J. Exp. Psychol. Gen. 124, 207–231 (1995).

    Article  Google Scholar 

  23. Gopher, D., Armony, L. & Greenshpan, Y. Switching tasks and attention policies. J. Exp. Psychol. Gen. 129, 308–339 (2000).

    Article  CAS  Google Scholar 

  24. Rubinstein, J. S., Meyer, D. E. & Evans, J. E. Executive control of cognitive processes in task switching. J. Exp. Psychol. Hum. Percept. Perform. 27, 763–797 (2001).

    Article  CAS  Google Scholar 

  25. D'Esposito, M. et al. The neural basis of the central executive system of working memory. Nature 378, 279–281 (1995).

    Article  CAS  Google Scholar 

  26. Sohn, M-H., Ursu, S., Anderson, J. R., Stenger, V. A. & Carter, C. S. The role of prefrontal cortex and posterior parietal cortex in task switching. Proc. Natl. Acad. Sci. USA 97, 13448–13453 (2000).

    Article  CAS  Google Scholar 

  27. Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S. J. & Passingham, R. E. The prefrontal cortex: response selection or maintenance within working memory? Science 288, 1656–1660 (2000).

    Article  CAS  Google Scholar 

  28. Rowe, J. B. & Passingham, R. E. Working memory for location and time: activity in prefrontal area 46 relates to selection rather than maintenance in memory. Neuroimage 14, 77–86 (2001).

    Article  CAS  Google Scholar 

  29. Malmo, R. B. Interference factors in delayed response in monkeys after removal of frontal lobes. J. Neurophysiol. 5, 295–308 (1942).

    Article  Google Scholar 

  30. Brewer, J. B., Zhao, Z., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. E. Making memories: brain activity that predicts how well visual experience will be remembered. Science 281, 1185–1187 (1998).

    Article  CAS  Google Scholar 

  31. Wagner, A. D. et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281, 1188–1191 (1998).

    Article  CAS  Google Scholar 

  32. Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G. & Haxby, J. V. An area specialized for spatial working memory in human frontal cortex. Science 279, 1347–1351 (1998).

    Article  CAS  Google Scholar 

  33. Rosen, A. C. et al. Neural basis of endogenous and exogenous spatial orienting: a functional MRI study. J. Cognit. Neurosci. 11, 135–152 (1999).

    Article  CAS  Google Scholar 

  34. Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P. & Shulman, G. L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat. Neurosci. 3, 292–297 (2000).

    Article  CAS  Google Scholar 

  35. Perry, R. J. & Zeki, S. The neurology of saccades and covert shifts in spatial attention. An event-related fMRI study. Brain 123, 2273–2288 (2000).

    Article  Google Scholar 

  36. Salinas, E. & Sejnowski, T. Correlated neuronal activity and the flow of neural information. Nat. Rev. Neurosci. 2, 539–550 (2001).

    Article  CAS  Google Scholar 

  37. Varela, F., Lachaux, J. -P., Rodriguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239 (2001).

    Article  CAS  Google Scholar 

  38. Frith, C. in Control of Cognitive Processes: Attention and Performance XVIII (eds. Monsell, S. & Driver, J.) 549–565 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  39. Miyashita, Y. & Hayashi, T. Neural representation of visual objects: encoding and top-down activation. Curr. Opin. Neurobiol. 10, 187–194 (2000).

    Article  CAS  Google Scholar 

  40. Wang, X. J. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 24, 455–463 (2001).

    Article  CAS  Google Scholar 

  41. Wagner, A. D., Maril, A., Bjork, R. A. & Schacter, D. L. Prefrontal contributions to executive control: fMRI evidence for functional distinctions within lateral prefrontal cortex. Neuroimage 14, 1337–1347 (2001).

    Article  CAS  Google Scholar 

  42. Petrides, M. in The Prefrontal Cortex (eds. Roberts, A. C., Robins T. W. & Weiskrantz, L.) 103–116 (Oxford Univ. Press, Oxford, UK, 1998).

    Google Scholar 

  43. Owen, A. M. et al. Redefining the functional organization of working memory processes within human lateral prefrontal cortex. Eur. J. Neurosci. 11, 567–574 (1999).

    Article  CAS  Google Scholar 

  44. D'Esposito, M., Postle, B. R., Ballard, D. & Lease, J. Maintenance versus manipulation of information held in working memory: an event-related fMRI study. Brain Cogn. 41, 66–86 (1999).

    Article  CAS  Google Scholar 

  45. Engel, A. K., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2, 704–716 (2001).

    Article  CAS  Google Scholar 

  46. Kato, M. et al. Eye movements in monkeys with local dopamine depletion in the caudate nucleus. I. Deficits in spontaneous saccades. J. Neurosci. 15, 912–927 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Frith, M. Rugg and R. Frackowiak for comments. This study was supported by the Wellcome Trust. K.S. was supported by the Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuyuki Sakai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, K., Rowe, J. & Passingham, R. Active maintenance in prefrontal area 46 creates distractor-resistant memory. Nat Neurosci 5, 479–484 (2002). https://doi.org/10.1038/nn846

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn846

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing