Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retinal ganglion cell synchronization by fixational eye movements improves feature estimation

Abstract

Image movements relative to the retina are essential for the visual perception of stationary objects during fixation. Here we have measured fixational eye and head movements of the turtle, and determined their effects on the activity of retinal ganglion cells by simulating the movements on the isolated retina. We show that ganglion cells respond mainly to components of periodic eye movement that have amplitudes of roughly the diameter of a photoreceptor. Drift or small head movements have little effect. Driven cells that are located along contrast borders are synchronized, which reliably signals a preceding movement. In an artificial neural network, the estimation of spatial frequencies for various square wave gratings improves when timelocked to this synchronization. This could potentially improve stimulus feature estimation by the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Eye movements of the turtle during fixation.
Figure 2: Periodic eye movements increase retinal activity.
Figure 3: Single-unit responses to fixational eye movements.
Figure 4: Synchronization signals a preceding movement.
Figure 5: Grating frequency estimation improves when timelocked to synchronization.

Similar content being viewed by others

References

  1. Warland, D. K., Reinagel, P. & Meister, M. Decoding visual information from a population of retinal ganglion cells. J. Neurophysiol. 78, 2336–2350 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Ferrandez, J. M., Bolea, J. A., Ammermüller, J., Normann, R. A. & Fernandez, E. A neural network approach for the analysis of multineural recordings in retinal ganglion cells. Lecture Notes Comp. Sci. 1607, 289–298 (1999).

    Article  Google Scholar 

  3. Shoham, S. et al. The classification of spatial, chromatic, and intensity features of simple visual stimuli by a network of retinal ganglion cells. Lecture Notes Comp. Sci. 1240, 44–53 (1997).

    Article  Google Scholar 

  4. Normann, R. A., Warren, D., Ammermüller, J., Fernandez, E. & Guillory, S. High spatio-temporal mapping of visual pathways using multi-electrode arrays. Vision Res. 41, 1261–1275 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Fernandez, E., Ferrandez, J.-M., Ammermüller, J., & Normann, R. A. Population coding in spike trains of simultaneously recorded retinal ganglion cells. Brain Res. 887, 222–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Meister, M. & Berry, M. J. II. The neural code of the retina. Neuron 22, 435–450 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Hartline, H. K. The responses of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am. J. Physiol. 121, 400–415 (1938).

    Article  Google Scholar 

  8. Hubel, D. & Wiesel, T. N. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. (Lond.) 148, 574–591 (1959).

    Article  CAS  Google Scholar 

  9. Riggs, L. A. & Ratliff, F. The effects of counteracting the normal movements of the eye. J. Opt. Soc. Am. 42, 872–873 (1952).

    Google Scholar 

  10. Ditchburn, R. W. & Ginsborg, B. L. Vision with a stabilized retinal image. Nature 170, 36–37 (1952).

    Article  CAS  PubMed  Google Scholar 

  11. Barlow, H. B. Eye movements during fixation. J. Physiol. (Lond.) 116, 290–306 (1952).

    Article  CAS  Google Scholar 

  12. Steinman, R. M. & Levinson, J. Z. in Eye Movements and Their Role in Visual and Cognitive Processes (ed. Kowler, E.) 115–212 (Elsevier, Amsterdam, 1990).

    Google Scholar 

  13. Enroth-Cugell, C. & Shapley, R. M. Adaptation and dynamics of cat retinal ganglion cells. J. Physiol. (Lond.) 233, 271–309 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuffler, S. W. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68 (1953).

    Article  CAS  PubMed  Google Scholar 

  15. Bair, W. & O'Keefe, L. P. The influence of fixational eye movements on the response of neurons in area MT of the macaque. Vis. Neurosci. 15, 779–786 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Leopold, D. A. & Logothetis, N. K. Microsaccades differentially modulate neural activity in the striate and extrastriate visual cortex. Exp. Brain Res. 123, 341–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Martinez-Conde, S., Machnik, S. L. & Hubel, D. H. Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys. Nat. Neurosci. 3, 251–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Gur, M., Beylin, A. & Snodderly, D. M. Response variability of neurons in primary visual cortex (V1) of alert monkeys. J. Neurosci. 17, 2914–2920 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Snodderly, D. M., Kagan, I. & Gur, M. Selective activation of visual cortex neurons by fixational eye movements: implications for neural coding. Vis. Neurosci. 18, 259–277 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Kolb, H. & Jones, J. The distinction by light and electron microscopy of two types of cone containing colorless oil droplets in the retina of the turtle. Vision Res. 27, 1445–1458 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Granda, A. M. & Fulbrook, J. E. Classification of turtle retinal ganglion cells. J. Neurophysiol. 62, 723–737 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Brivanlou, I. C. H., Warland, D. K. & Meister, M. Mechansims of concerted firing among retinal ganglion cells. Neuron 20, 527–539 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Fahle, M. Psychophysical measurement of eye drifts and tremor by dichoptic or monocular vernier acuity. Vision Res. 31, 209–222 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Eizenman, M., Hallett, P. E. & Frecker, R. C. Power spectra for ocular drift and tremor. Vision Res. 25, 1635–1640 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Coakley, D. Minute Eye Movement and Brain Stem Function (CRC Press, Boca Raton, Florida, 1983).

    Google Scholar 

  26. Shapley, R. & Victor, J. Hyperacuity in cat retinal ganglion cells. Science 231, 999–1002 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. Bowling, D. B. Light responses of ganglion cells in the retina of the turtle. J. Physiol. (Lond.) 299, 173–196 (1980).

    Article  CAS  Google Scholar 

  28. Rosenberg, A. F. & Ariel, M. Electrophysiological evidence for a direct projection of direction-sensitive retinal ganglion cells to the turtle's accessory optic system. J. Neurophysiol. 65, 1022–1033 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Berry, M. J., Warland, D. K. & Meister, M. The structure and precision of retinal spike trains. Proc. Natl Acad. Sci. USA 94, 5411–5416 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Keat, J., Reinagel, P., Reid, R. C. & Meister, M. Predicting every spike: a model for the responses of visual neurons. Neuron 30, 803–817 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Stanley, G. B., Li, F. F. & Dan, Y. Reconstruction of natural scenes from ensemble responses in the lateral geniculate nucleus. J. Neurosci. 19, 8036–8042 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nothmore, D. P. M. & Granda, A. M. Ocular dimensions and schematic eyes of freshwater and sea turtles. Vis. Neurosci. 7, 627–635 (1991).

    Article  Google Scholar 

  33. Jones, K. E., Campbell, P. K. & Normann, R. A. A glass/silicon composite intracortical electrode array. Ann. Biomed. Eng. 20, 423–437 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Seung, H. S. & Sompolinsky, H. Simple models for reading neuronal population codes. Proc. Natl Acad. Sci. USA 90, 10749–10753 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rujan, P. A fast method for calculating the perceptron with maximal stability. J. Phys. (Paris) 3, 277–290 (1993).

    Google Scholar 

Download references

Acknowledgements

We thank S. Massey, R.A. Normann, R. Weiler and M. Greenlee for critically reading the manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft and the European Community (CORTIVIS) to J.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Ammermüller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greschner, M., Bongard, M., Rujan, P. et al. Retinal ganglion cell synchronization by fixational eye movements improves feature estimation. Nat Neurosci 5, 341–347 (2002). https://doi.org/10.1038/nn821

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn821

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing