Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional imaging of the primate superior colliculus during saccades to visual targets

Abstract

The primate superior colliculus (SC) is a midbrain nucleus crucial for the control of rapid eye movements (saccades). Its neurons are topographically arranged over the rostrocaudal and mediolateral extent of its deeper layers so that saccade metrics (amplitude and direction) are coded in terms of the location of active neurons. We used the quantitative [14C]-deoxyglucose method to obtain a map of the two-dimensional pattern of activity throughout the SC of rhesus monkeys repeatedly executing visually guided saccades of the same amplitude and direction for the duration of the experiment. Increased metabolic activity was confined to a circumscribed region of the two-dimensional reconstructed map of the SC contralateral to the direction of the movement. The precise rostrocaudal and mediolateral location of the area activated depended on saccade metrics. Our data support the notion that the population of active SC cells remains stationary in collicular space during saccades.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional imaging of saccade-related activation in SC.
Figure 2: SC activation depends on saccade metrics.
Figure 3: Functional imaging of the representation of the horizontal meridian in the intermediate layers of the SC.
Figure 4: Functional imaging of the superficial tectal layers.

Similar content being viewed by others

References

  1. Moschovakis, A. K. The superior colliculus and eye movement control. Curr. Opin. Neurobiol. 6, 811–816 (1996).

    Article  CAS  Google Scholar 

  2. Kadoya, S., Wolin, L. R. & Massopust, L. C. J. Photically evoked unit activity in the tectum opticum of the squirrel monkey. J. Comp. Neurol. 142, 495–508 (1971).

    Article  CAS  Google Scholar 

  3. Cynader, M. & Berman, N. Receptive-field organization of monkey superior colliculus. J. Neurophysiol. 35, 187–201 (1972).

    Article  CAS  Google Scholar 

  4. Updike, B. V. Characteristics of unit responses in superior colliculus of the Cebus monkey. J. Neurophysiol. 37, 896–909 (1974).

    Article  Google Scholar 

  5. Schiller, P. H. & Stryker, M. Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J. Neurophysiol. 35, 915–924 (1972).

    Article  CAS  Google Scholar 

  6. Wurtz, R. E. & Goldberg, M. E. Activity of superior colliculus in behaving monkey. III. Cells discharging before eye movements. J. Neurophysiol. 35, 575–586 (1972).

    Article  CAS  Google Scholar 

  7. Sparks, D. L. Functional properties of neurons in the monkey superior colliculus: coupling of neuronal activity and saccade onset. Brain Res. 156, 1–16 (1978).

    Article  CAS  Google Scholar 

  8. Droulez, J. & Berthoz, A. A neural network model of sensoritopic maps with predictive short-term memory properties. Proc. Natl. Acad. Sci. USA 88, 9653–9657 (1991).

    Article  CAS  Google Scholar 

  9. Munoz, D. P. & Wurtz, R. H. Saccade-related activity in monkey superior colliculus. II. Spread of activity during saccades. J. Neurophysiol. 73, 2334–2348 (1995).

    Article  CAS  Google Scholar 

  10. Optican, L. M. A field theory of saccade generation: temporal-to-spatial transform in the superior colliculus. Vision Res. 35, 3313–3320 (1995).

    Article  CAS  Google Scholar 

  11. Waitzman, D. M., Ma, T. P., Optican, L. M. & Wurtz, R. H. Superior colliculus neurons mediate the dynamic characteristics of saccades. J. Neurophysiol. 66, 1716–1737 (1991).

    Article  CAS  Google Scholar 

  12. van Gisbergen, J. A. M., Robinson, D. A. & Gielen, S. A quantitative analysis of generation of sacccadic eye movements by burst neurons. J. Neurophysiol. 45, 417–442 (1981).

    Article  CAS  Google Scholar 

  13. Scudder, C. A. A new local feedback model of the saccadic burst generator. J. Neurophysiol. 59, 1455–1475 (1988).

    Article  CAS  Google Scholar 

  14. Moschovakis, A. K. Neural network simulations of the primate oculomotor system. I. The vertical saccadic burst generator. Biol. Cybern. 70, 291–302 (1994).

    Article  CAS  Google Scholar 

  15. Bozis, A. & Moschovakis, A. K. Neural network simulations of the primate oculomotor system. III. A one-dimensional one-directional model of the superior colliculus. Biol. Cybern. 79, 215–230 (1998).

    Article  CAS  Google Scholar 

  16. Ottes, F. P., van Gisbergen, J. A. M. & Eggermont, J. J. Visuomotor fields of the superior colliculus: a quantitative model. Vision Res. 26, 857–873 (1986).

    Article  CAS  Google Scholar 

  17. Anderson, R. W., Keller, E. L., Gandhi, N. J. & Das, S. Two-dimensional saccade-related population activity in superior colliculus in monkey. J. Neurophysiol. 80, 798–817 (1998).

    Article  CAS  Google Scholar 

  18. Sokoloff, L. et al. The [14C]deoxyglucose method for the measurment of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897–916 (1977).

    Article  CAS  Google Scholar 

  19. Sparks, D. L. & Mays, L. E. Movement fields of saccade-related burst neurons in the monkey superior colliculus. Brain Res. 190, 39–50 (1980).

    Article  CAS  Google Scholar 

  20. Robinson, D. A. Eye movements evoked by collicular stimulation in the alert monkey. Vision Res. 12, 1795–1808 (1972).

    Article  CAS  Google Scholar 

  21. van Opstal, A. J., van Gisbergen, J. A. M. & Smit, A. C. Comparison of saccades evoked by visual stimulation and collicular electrical stimulation in the alert monkey. Exp. Brain Res. 79, 299–312 (1990).

    Article  CAS  Google Scholar 

  22. Goldberg, M. E. & Wurtz, R. H. Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. J. Neurophysiol. 35, 560–574 (1972).

    Article  CAS  Google Scholar 

  23. Munoz, D. P. & Wurtz, R. H. Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. J. Neurophysiol. 70, 559–575 (1993).

    Article  CAS  Google Scholar 

  24. Everling, S., Paré, M., Dorris, M. C. & Munoz, D. P. Comparison of the discharge characteristics of brain stem omnipause neurons and superior colliculus fixation neurons in monkey: implications for control of fixation and saccade behavior. J. Neurophysiol. 79, 511–528 (1998).

    Article  CAS  Google Scholar 

  25. Krauzlis, R. J., Basso, M. A. & Wurtz, R. H. Discharge properties of neurons in the rostral superior colliculus in the monkey during smooth-pursuit eye movements. J. Neurophysiol. 84, 876–891 (2000).

    Article  CAS  Google Scholar 

  26. Munoz, D. P., Pelisson, D. & Guitton, D. Movement of neural activity on the superior colliculus motor map during gaze shifts. Science 251, 1358–1360 (1991).

    Article  CAS  Google Scholar 

  27. Munoz, D. P., Guitton, D. & Pelisson, D. Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. III. Spatiotemporal characteristics of phasic motor discharges. J. Neurophysiol. 66, 1642–1666 (1991).

    Article  CAS  Google Scholar 

  28. Aizawa, H. & Wurtz, R. H. Reversible inactivation of monkey superior colliculus. I. Curvature of saccadic trajectory. J. Neurophysiol. 79, 2082–2096 (1998).

    Article  CAS  Google Scholar 

  29. Sparks, D. L., Holland, R. & Guthrie, B. L. Size and distribution of movement fields in the monkey superior colliculus. Brain Res. 113, 21–34 (1976).

    Article  CAS  Google Scholar 

  30. Moschovakis, A. K., Karabelas, A. B. & Highstein, S. M. Structure-function relationships in the primate superior colliculus. II. Morphological identity of presaccadic neurons. J. Neurophysiol. 60, 263–302 (1988).

    Article  CAS  Google Scholar 

  31. Keller, E. L. & Edelman, J. A. Use of interrupted saccade paradigm to study spatial and temporal dynamics of saccade burst cells in superior colliculus in monkey. J. Neurophysiol. 72, 2754–2770 (1994).

    Article  CAS  Google Scholar 

  32. Munoz, D. P., Waitzman, D. M. & Wurtz, R. H. Activity of neurons in monkey superior colliculus during interrupted saccades. J. Neurophysiol. 75, 2562–2580 (1996).

    Article  CAS  Google Scholar 

  33. Port, N. L., Sommer, M. A. & Wurtz, R. H. Multielectrode evidence for spreading activity across the superior colliculus movement map. J. Neurophysiol. 84, 344–357 (2000).

    Article  CAS  Google Scholar 

  34. Everling, S., Dorris, M. C., Klein, R. M. & Munoz, D. P. Role of primate superior colliculus in preparation and execution of anti-saccades and pro-saccades. J. Neurosci. 19, 2740–2754 (1999).

    Article  CAS  Google Scholar 

  35. Munoz, D. P. & Wurtz, R. H. Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. J. Neurophysiol. 73, 2313–2333 (1995).

    Article  CAS  Google Scholar 

  36. Judge, S. J., Richmond, B. J. & Chu, F. C. Implantation of magnetic search coils for measurements of eye position: an improved method. Vision Res. 20, 535–538 (1980).

    Article  CAS  Google Scholar 

  37. Robinson, D. A. A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans. Biomed. Engin. 10, 137–145 (1963).

    CAS  Google Scholar 

  38. Gregoriou, G. G. & Savaki, H. E. The intraparietal cortex: subregions involved in fixation, saccades and in the visual and somatosensory guidance of movement. J. Cereb. Blood Flow Metab. 21, 671–682 (2001).

    Article  CAS  Google Scholar 

  39. Savaki, H. E., Kennedy, C., Sokoloff, L. & Mishkin, M. Visually guided reaching with the forelimb contralateral to a “blind” hemisphere: a metabolic mapping study in monkeys. J. Neurosci. 13, 2772–2789 (1993).

    Article  CAS  Google Scholar 

  40. Dalezios, Y., Raos, V. C. & Savaki, H. E. Metabolic activity pattern in the motor and somatosensory cortex of monkeys performing a visually guided reaching task with one forelimb. Neuroscience 72, 325–333 (1996).

    Article  CAS  Google Scholar 

  41. Savaki, H. E., Raos, V. C. & Dalezios, Y. Spatial cortical patterns of metabolic activity in monkeys performing a visually guided reaching task with one forelimb. Neuroscience 76, 1007–1034 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The technical assistance of M. Koumaki and the financial support of BIO4-CT98-0546 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Moschovakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moschovakis, A., Gregoriou, G. & Savaki, H. Functional imaging of the primate superior colliculus during saccades to visual targets. Nat Neurosci 4, 1026–1031 (2001). https://doi.org/10.1038/nn727

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn727

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing