Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neurotrophins use the Erk5 pathway to mediate a retrograde survival response

A Corrigendum to this article was published on 01 October 2002

Abstract

Growth factors synthesized and released by target tissues promote survival and differentiation of innervating neurons. This retrograde signal begins when growth factors bind receptors at nerve terminals. Activated receptors are then endocytosed and transported through the axon to the cell body. Here we show that the mitogen-activated protein kinase (MAPK) signaling pathways used by neurotrophins during retrograde signaling differ from those used following direct stimulation of the cell soma. During retrograde signaling, endocytosed neurotrophin receptors (Trks) activate the extracellular signal-related protein kinase 5 (Erk5) pathway, leading to nuclear translocation of Erk5, phosphorylation of CREB, and enhanced neuronal survival. In contrast, Erk1/2, which mediates nuclear responses following direct cell body stimulation, does not transmit a retrograde signal. Thus, the Erk5 pathway has a unique function in retrograde signaling. Differential activation of distinct MAPK pathways may enable an individual growth factor to relay information that specifies the location and the nature of stimulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mek1/2 and Erk1/2 do not mediate the neurotrophin-induced retrograde signal.
Figure 2: Neurotrophin stimulation induces Erk5 activation and nuclear translocation.
Figure 3: Erk5 is activated during retrograde signaling.
Figure 4: Endocytosed Trks mediate retrograde signaling to Erk5 and CREB.
Figure 5: Activation of Erk5 promotes survival.

Similar content being viewed by others

References

  1. Altar, C. A. & DiStefano, P. S. Neurotrophin trafficking by anterograde transport. Trends Neurosci. 21, 433–437 (1998).

    Article  CAS  Google Scholar 

  2. Kohara, K., Kitamura, A., Morishima, M. & Tsumoto, T. Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons. Science 291, 2419–2423 (2001).

    Article  CAS  Google Scholar 

  3. Campenot, R. B. NGF and the local control of nerve terminal growth. J. Neurobiol. 25, 599–611 (1994).

    Article  CAS  Google Scholar 

  4. Lom, B. & Cohen-Cory, S. Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo. J. Neurosci. 19, 9928–9938 (1999).

    Article  CAS  Google Scholar 

  5. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).

    Article  CAS  Google Scholar 

  6. Finkbeiner, S. CREB couples neurotrophin signals to survival messages. Neuron 25, 11–14 (2000).

    Article  CAS  Google Scholar 

  7. English, J. et al. New insights into the control of MAP kinase pathways. Exp. Cell Res. 253, 255–270 (1999).

    Article  CAS  Google Scholar 

  8. Xing, J., Ginty, D. D. & Greenberg, M. E. Coupling of the Ras-Mapk pathway to gene activation by Rsk2, a growth factor-regulated Creb kinase. Science 273, 959–963 (1996).

    Article  CAS  Google Scholar 

  9. Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358–1362 (1999).

    Article  CAS  Google Scholar 

  10. Riccio, A., Ahn, S., Davenport, C., Blendy, J. & Ginty, D. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358–2361 (1999).

    Article  CAS  Google Scholar 

  11. Riccio, A., Pierchala, B. A., Ciarallo, C. L. & Ginty, D. D. An NGF-Trka-mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science 277, 1097–1100 (1997).

    Article  CAS  Google Scholar 

  12. Watson, F. L. et al. Rapid nuclear responses to target-derived neurotrophins require retrograde transport of ligand-receptor complex. J. Neurosci. 19, 7889–7900 (1999).

    Article  CAS  Google Scholar 

  13. Atwal, J., Massie, B., Miller, F. & Kaplan, D. The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron 27, 265–277 (2000).

    Article  CAS  Google Scholar 

  14. Klesse, L. & Parada, L. p21 ras and phosphatidylinositol-3 kinase are required for survival of wild-type and NF1 mutant sensory neurons. J. Neurosci. 18, 10420–10428 (1998).

    Article  CAS  Google Scholar 

  15. Pearson, G. et al. Mitogen-activated protein (map) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153–183 (2001).

    CAS  PubMed  Google Scholar 

  16. Cavanaugh, J. E. et al. Differential regulation of mitogen-activated protein kinases ERK1/2 and ERK5 by neurotrophins, neuronal activity, and cAMP in neurons. J. Neurosci. 21, 434–443 (2001).

    Article  CAS  Google Scholar 

  17. Kamakura, S., Moriguchi, T. & Nishida, E. Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J. Biol. Chem. 274, 26563–26571 (1999).

    Article  CAS  Google Scholar 

  18. Chiariello, M., Marinissen, M. J. & Gutkind, J. S. Multiple mitogen-activated protein kinase signaling pathways connect the cot oncoprotein to the c-jun promoter and to cellular transformation. Mol. Cell Biol. 20, 1747–1758 (2000).

    Article  CAS  Google Scholar 

  19. Pearson, G., English, J. M., White, M. A. & Cobb, M. H. ERK5 and ERK2 cooperate to regulate NF-κB and cell transformation. J. Biol. Chem. 276, 7927–7931 (2000).

    Article  Google Scholar 

  20. Kato, Y. et al. Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor. Nature 395, 713–716 (1998).

    Article  CAS  Google Scholar 

  21. Damke, H., Baba, T., van der Bliek, A. M. & Schmid, S. L. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J. Cell Biol. 131, 69–80 (1995).

    Article  CAS  Google Scholar 

  22. van der Bliek, A. M. et al. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J. Cell Biol. 122, 553–563 (1993).

    Article  Google Scholar 

  23. Zhang, Y., Moheban, D., Conway, B., Bhattacharyya, A. & Segal, R. Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J. Neurosci. 20, 5671–5678 (2000).

    Article  CAS  Google Scholar 

  24. Mao, Z., Bonni, A., Xia, F., Nadal-Vincens, M. & Greenberg, M. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, 785–790 (1999).

    Article  CAS  Google Scholar 

  25. Kuruvilla, R., Ye, H. & Ginty, D. D. Spatially and functionally distinct roles of the PI3-K effector pathway during NGF signaling in sympathetic neurons. Neuron 27, 499–512 (2000).

    Article  CAS  Google Scholar 

  26. Beattie, E. C. et al. A signaling endosome hypothesis to explain NGF actions: potential implications for neurodegeneration. Cold Spring Harb. Symp. Quant. Biol. 61, 389–406 (1996).

    Article  CAS  Google Scholar 

  27. Arthur, J. S. & Cohen, P. MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. FEBS Lett. 482, 44–48 (2000).

    Article  CAS  Google Scholar 

  28. Walton, M. et al. CREB phosphorylation promotes nerve cell survival. J. Neurochem. 73, 1836–1842 (1999).

    CAS  PubMed  Google Scholar 

  29. Delcroix, J. D. et al. Axonal transport of activating transcription factor-2 is modulated by nerve growth factor in nociceptive neurons. J. Neurosci. 19, RC24 (1999).

  30. Bhattacharyya, A. et al. Trk receptors function as rapid retrograde signal carriers in the adult nervous system. J. Neurosci. 17, 7007–7016 (1997).

    Article  CAS  Google Scholar 

  31. Senger, D. L. & Campenot, R. B. Rapid retrograde tyrosine phosphorylation of TrkA and other proteins in rat sympathetic neurons in compartmented cultures. J. Cell Biol. 138, 411–421 (1997).

    Article  CAS  Google Scholar 

  32. Ehlers, M., Kaplan, D., Price, D. & Koliatsos, V. NGF-stimulated retrograde transport of trk A in the mammalian nervous system. J. Cell Biol. 130, 149–156 (1995).

    Article  CAS  Google Scholar 

  33. Fukuhara, S., Marinissen, M. J., Chiariello, M. & Gutkind, J. S. Signaling from G protein-coupled receptors to ERK5/Big MAPK 1 involves Gαq and Gα12/13 families of heterotrimeric G proteins. Evidence for the existence of a novel Ras and Rho-independent pathway. J. Biol. Chem. 275, 21730–21736 (2000).

    Article  CAS  Google Scholar 

  34. Janknecht, R., Ernst, W. H., Pingoud, V. & Nordheim, A. Activation of ternary complex factor Elk-1 by MAP kinases. EMBO J. 12, 5097–5104 (1993).

    Article  CAS  Google Scholar 

  35. Kato, Y. et al. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J. 16, 7054–7066 (1997).

    Article  CAS  Google Scholar 

  36. Hemesath, T. J., Price, E. R., Takemoto, C., Badalian, T. & Fisher, D. E. MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391, 298–301 (1998).

    Article  CAS  Google Scholar 

  37. Snider, W. & Lichtman, J. Are neurotrophins synaptotrophins? Mol. Cell. Neurosci. 7, 433–442 (1996).

    Article  CAS  Google Scholar 

  38. He, T.-C. et al. A simplified system for generating recombinant adenovirus. Proc. Natl. Acad. Sci. USA 95, 2509–2514 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Gutkind (NIH) for Erk5 and Mek5 plasmids. We thank A. Welcher (Amgen, California) for donating the BDNF, T. Roberts for Raf1 antibodies and P. Silver for GFP antibodies (Dana-Farber, Massachusetts), M. Greenberg (Children's Hospital, Massachusetts) for P-CREB antibodies and E. Schaefer (QCB Biosource, Massachusetts) for P-Erk5 antibodies. We thank D. Moheban, M. Pazyra and D. Micomonaco for technical assistance. We thank M. Greenberg, J. Kornhauser, L. Parada and C. Stiles for comments. This work was supported by grants from NIH(NS35148) and the Klingenstein Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalind A. Segal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, F., Heerssen, H., Bhattacharyya, A. et al. Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat Neurosci 4, 981–988 (2001). https://doi.org/10.1038/nn720

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn720

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing