Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The representation of economic value in the orbitofrontal cortex is invariant for changes of menu

Abstract

Economic choice entails assigning values to the available options and is impaired by lesions to the orbitofrontal cortex (OFC). Recent results show that some neurons in the OFC encode the values that monkeys (Macaca mulatta) assign to different goods when they choose between them. A broad and fundamental question is how this neuronal representation of value depends on the behavioral context. Here we show that neuronal responses in the OFC are typically invariant for changes of menu. In other words, the activity of a neuron in response to one particular good usually does not depend on what other goods are available at the same time. Neurons in the OFC encode economic value, not relative preference. The fact that their responses are menu invariant suggests that transitivity, a fundamental trait of economic choice, may be rooted in the activity of individual neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design.
Figure 2: Analysis of choice patterns.
Figure 3: Responses of three OFC neurons.
Figure 4: Menu invariance.
Figure 5: Explained variance.

Similar content being viewed by others

References

  1. Fellows, L.K. The cognitive neuroscience of human decision making: a review and conceptual framework. Behav. Cogn. Neurosci. Rev. 3, 159–172 (2004).

    Article  Google Scholar 

  2. Glimcher, P.W., Dorris, M.C. & Bayer, H.M. Physiological utility theory and the neuroeconomics of choice. Games Econ. Behav. 52, 213–256 (2005).

    Article  Google Scholar 

  3. Padoa-Schioppa, C., Jandolo, L. & Visalberghi, E. Multi-stage mental process for economic choice in capuchins. Cognition 99, B1–B13 (2006).

    Article  Google Scholar 

  4. Ongur, D. & Price, J.L. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10, 206–219 (2000).

    Article  CAS  Google Scholar 

  5. Pasquier, F. & Petit, H. Frontotemporal dementia: its rediscovery. Eur. Neurol. 38, 1–6 (1997).

    Article  CAS  Google Scholar 

  6. Hodges, J.R. Frontotemporal dementia (Pick's disease): clinical features and assessment. Neurology 56, S6–S10 (2001).

    Article  CAS  Google Scholar 

  7. Izquierdo, A., Suda, R.K. & Murray, E.A. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J. Neurosci. 24, 7540–7548 (2004).

    Article  CAS  Google Scholar 

  8. Fellows, L.K. & Farah, M.J. The role of ventromedial prefrontal cortex in decision making: judgment under uncertainty or judgment per se? Cereb. Cortex 17, 2669–2674 (2007).

    Article  Google Scholar 

  9. Everitt, B.J. & Robbins, T.W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).

    Article  CAS  Google Scholar 

  10. Bechara, A., Tranel, D., Damasio, H. & Damasio, A.R. Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cereb. Cortex 6, 215–225 (1996).

    Article  CAS  Google Scholar 

  11. Rahman, S., Sahakian, B.J., Hodges, J.R., Rogers, R.D. & Robbins, T.W. Specific cognitive deficits in mild frontal variant of frontotemporal dementia. Brain 122, 1469–1493 (1999).

    Article  Google Scholar 

  12. Koenigs, M. & Tranel, D. Irrational economic decision-making after ventromedial prefrontal damage: evidence from the Ultimatum Game. J. Neurosci. 27, 951–956 (2007).

    Article  CAS  Google Scholar 

  13. Arana, F.S. et al. Dissociable contributions of the human amygdala and orbitofrontal cortex to incentive motivation and goal selection. J. Neurosci. 23, 9632–9638 (2003).

    Article  CAS  Google Scholar 

  14. Blair, K. et al. Choosing the lesser of two evils, the better of two goods: specifying the roles of ventromedial prefrontal cortex and dorsal anterior cingulate in object choice. J. Neurosci. 26, 11379–11386 (2006).

    Article  CAS  Google Scholar 

  15. O'Doherty, J.P. Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr. Opin. Neurobiol. 14, 769–776 (2004).

    Article  CAS  Google Scholar 

  16. Knutson, B., Taylor, J., Kaufman, M., Peterson, R. & Glover, G. Distributed neural representation of expected value. J. Neurosci. 25, 4806–4812 (2005).

    Article  CAS  Google Scholar 

  17. Pritchard, T.C. et al. Gustatory neural responses in the medial orbitofrontal cortex of the old world monkey. J. Neurosci. 25, 6047–6056 (2005).

    Article  CAS  Google Scholar 

  18. Wallis, J.D. & Miller, E.K. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur. J. Neurosci. 18, 2069–2081 (2003).

    Article  Google Scholar 

  19. Roesch, M.R. & Olson, C.R. Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304, 307–310 (2004).

    Article  CAS  Google Scholar 

  20. Rolls, E.T., Sienkiewicz, Z.J. & Yaxley, S. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur. J. Neurosci. 1, 53–60 (1989).

    Article  Google Scholar 

  21. Roesch, M.R. & Olson, C.R. Neuronal activity dependent on anticipated and elapsed delay in macaque prefrontal cortex, frontal and supplementary eye fields and premotor cortex. J. Neurophysiol. 94, 1469–1497 (2005).

    Article  Google Scholar 

  22. Padoa-Schioppa, C. & Assad, J.A. Neurons in orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    Article  CAS  Google Scholar 

  23. Montague, P.R. & Berns, G.S. Neural economics and the biological substrates of valuation. Neuron 36, 265–284 (2002).

    Article  CAS  Google Scholar 

  24. Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).

    Article  CAS  Google Scholar 

  25. Kreps, D.M. A Course in Microeconomic Theory, 850 (Princeton University Press, Princeton, New Jersey, 1990).

    Google Scholar 

  26. Allingham, M. Choice Theory: A Very Short Introduction, 127 (Oxford University Press, Oxford, 2002).

    Book  Google Scholar 

  27. Tobler, P.N., Fiorillo, C.D. & Schultz, W. Adaptive coding of reward value by dopamine neurons. Science 307, 1642–1645 (2005).

    Article  CAS  Google Scholar 

  28. Cromwell, H.C., Hassani, O.K. & Schultz, W. Relative reward processing in primate striatum. Exp. Brain Res. 162, 520–525 (2005).

    Article  Google Scholar 

  29. Hosokawa, T., Kato, K., Inoue, M. & Mikami, A. Neurons in the macaque orbitofrontal cortex code relative preference of both rewarding and aversive outcomes. Neurosci. Res. 57, 434–445 (2007).

    Article  Google Scholar 

  30. Logan, F.A. Decision-making by rats: delay versus amount of reward. J. Comp. Physiol. Psychol. 59, 1–12 (1965).

    Article  CAS  Google Scholar 

  31. Campione, J.C. Transitivity and choice behavior. J. Exp. Child Psychol. 7, 387–399 (1969).

    Article  Google Scholar 

  32. Mazur, J.E. & Coe, D. Tests of transitivity in choices between fixed and variable reinforcer delays. J. Exp. Anal. Behav. 47, 287–297 (1987).

    Article  CAS  Google Scholar 

  33. Choi, S., Fisman, R., Gale, D. & Kariv, S. Consistency and heterogeneity of individual behavior under uncertainty. Am. Econ. Rev. (in the press).

  34. Tversky, A. The intransitivity of preferences. Psychol. Rev. 76, 31–48 (1969).

    Article  Google Scholar 

  35. Navarick, D.J. & Fantino, E. Transitivity as a property of choice. J. Exp. Anal. Behav. 18, 389–401 (1972).

    Article  CAS  Google Scholar 

  36. Shafir, S. Intransitivity of preferences in honey bees: support for 'comparative' evaluation of foraging options. Anim. Behav. 48, 55–67 (1994).

    Article  Google Scholar 

  37. Shafir, S. Context-dependent violations of rational choice in honeybees (Apis mellifera) and gray jays (Perisoreus canadensis). Behav. Ecol. Sociobiol. 51, 180–187 (2002).

    Article  Google Scholar 

  38. Tversky, A. & Simonson, I. Context-dependent preferences. Manage. Sci. 39, 117–185 (1993).

    Article  Google Scholar 

  39. Grace, R.C. Violations of transitivity: Implications for a theory of contextual choice. J. Exp. Anal. Behav. 60, 185–201 (1993).

    Article  Google Scholar 

  40. Price, J.L. Prefrontal cortical networks related to visceral function and mood. Ann. NY Acad. Sci. 877, 383–396 (1999).

    Article  CAS  Google Scholar 

  41. Sugrue, L.P., Corrado, G.S. & Newsome, W.T. Matching behavior and the representation of value in the parietal cortex. Science 304, 1782–1787 (2004).

    Article  CAS  Google Scholar 

  42. Padoa-Schioppa, C. Orbitofrontal cortex and the computation of economic value. Ann. NY Acad. Sci. published online 14 August 2007 (doi:10.1196/annals.1401.011).

  43. LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  Google Scholar 

  44. Critchley, H.D. Neural mechanisms of autonomic, affective and cognitive integration. J. Comp. Neurol. 493, 154–166 (2005).

    Article  Google Scholar 

  45. Carmichael, S.T. & Price, J.L. Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 363, 642–664 (1995).

    Article  CAS  Google Scholar 

  46. Dorris, M.C. & Glimcher, P.W. Activity in posterior parietal cortex is correlated with the relative subjective desirability of action. Neuron 44, 365–378 (2004).

    Article  CAS  Google Scholar 

  47. Judge, S.J., Richmond, B.J. & Chu, F.C. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res. 20, 535–538 (1980).

    Article  CAS  Google Scholar 

  48. Luce, R.D. Individual Choice Behavior: A Theoretical Analysis (Wiley, New York, 1959).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge A. Rustichini for many insightful discussions. We also thank A. Bisin, J. Maunsell, P. Glimcher and W. Schultz for helpful comments on earlier versions of the manuscript. This work was supported by a post-doctoral fellowship from the Harvard Mind/Brain/Behavior Initiative, by a Pathway to Independence Award from the National Institute of Mental Health to C.P.-S. (grant number K99-MH080852) and by a grant from the National Institute of Neurological Disorders and Stroke to J.A.A. (grant number R01-NS41000).

Author information

Authors and Affiliations

Authors

Contributions

C.P.-S. designed the experiment, collected and analyzed the data, and wrote the manuscript. J.A.A. assisted in the study and in manuscript preparation.

Corresponding author

Correspondence to Camillo Padoa-Schioppa.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, and Data (PDF 442 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padoa-Schioppa, C., Assad, J. The representation of economic value in the orbitofrontal cortex is invariant for changes of menu. Nat Neurosci 11, 95–102 (2008). https://doi.org/10.1038/nn2020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2020

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing