Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glial regulation of the cerebral microvasculature

Abstract

The brain is a heterogeneous organ with regionally varied and constantly changing energetic needs. Blood vessels in the brain are equipped with control mechanisms that match oxygen and glucose delivery through blood flow with the local metabolic demands that are imposed by neural activity. However, the cellular bases of this mechanism have remained elusive. A major advance has been the demonstration that astrocytes, cells with extensive contacts with both synapses and cerebral blood vessels, participate in the increases in flow evoked by synaptic activity. Their organization in nonoverlapping spatial domains indicates that they are uniquely positioned to shape the spatial distribution of the vascular responses that are evoked by neural activity. Astrocytic calcium is an important determinant of microvascular function and may regulate flow independently of synaptic activity. The involvement of astrocytes in neurovascular coupling has broad implications for the interpretation of functional imaging signals and for the understanding of brain diseases that are associated with neurovascular dysfunction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gliovascular interactions through the ages.
Figure 2: Astrocytes are closely related to cerebral blood vessels and synapses.
Figure 3: Astrocytes are central to neurovascular signaling.

Similar content being viewed by others

References

  1. Hossmann, K.A. Pathophysiology and therapy of experimental stroke. Cell. Mol. Neurobiol. 26, 1057–1083 (2006).

    Article  PubMed  Google Scholar 

  2. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5, 347–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Raichle, M.E. & Mintun, M.A. Brain work and brain imaging. Annu. Rev. Neurosci. 29, 449–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Lauritzen, M. Opinion. Reading vascular changes in brain imaging: is dendritic calcium the key? Nat. Rev. Neurosci. 6, 77–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Nedergaard, M., Ransom, B.R. & Goldman, S.A. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 26, 523–530 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Iadecola, C. Astrocytes take center stage in salt sensing. Neuron 54, 3–5 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Williams, L.R. & Leggett, R.W. Reference values for resting blood flow to organs of man. Clin. Phys. Physiol. Meas. 10, 187–217 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Roggendorf, W., Cervos-Navarro, J. & Matakas, F. The ultrastructural criteria of intracerebral arterioles. in The Cerebral Vessel Wall (ed. Cervos-Navarro, J.) 23–31 (Raven Press, New York, 1976).

    Google Scholar 

  9. Jones, E.G. On the mode of entry of blood vessels into the cerebral cortex. J. Anat. 106, 507–520 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Peters, A., Palay, S. & Webster, H.D. The Fine Structure of the Nervous System, 494 (Oxford University Press, New York, 1991).

    Google Scholar 

  11. Mathieu-Costello, O., Agey, P.J., Wu, L., Hang, J. & Adair, T.H. Capillary-to-fiber surface ratio in rat fast-twitch hindlimb muscles after chronic electrical stimulation. J. Appl. Physiol. 80, 904–909 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Klein, B., Kuschinsky, W., Schrock, H. & Vetterlein, F. Interdependency of local capillary density, blood flow and metabolism in rat brains. Am. J. Physiol. 251, H1333–H1340 (1986).

    CAS  PubMed  Google Scholar 

  13. Faraci, F.M. & Heistad, H.H. Regulation of large cerebral arteries and cerebral microvascular pressure. Circ. Res. 66, 8–17 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Ngai, A.C., Ko, K.R., Morii, S. & Winn, H.R. Effect of sciatic nerve stimulation on pial arterioles in rats. Am. J. Physiol. 254, H133–H139 (1988).

    CAS  PubMed  Google Scholar 

  15. Silva, A.C., Lee, S.P., Iadecola, C. & Kim, S.G. Early temporal characteristics of cerebral blood flow and deoxyhemoglobin changes during somatosensory stimulation. J. Cereb. Blood Flow Metab. 20, 201–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Cox, S.B., Woolsey, T.A. & Rovainen, C.M. Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J. Cereb. Blood Flow Metab. 13, 899–913 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Takano, T. et al. Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9, 260–267 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Kleinfeld, D., Mitra, P.P., Helmchen, F. & Denk, W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vaucher, E. & Hamel, E. Cholinergic basal forebrain neurons project to cortical microvessels in the rat: electron microscopic study with anterogradely transported Phaseolus vulgaris leucoagglutinin and choline acetyltransferase immunocytochemistry. J. Neurosci. 15, 7427–7441 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harris, K.M., Jensen, F.E. & Tsao, B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12, 2685–2705 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nedergaard, M., Takano, T. & Hansen, A.J. Beyond the role of glutamate as a neurotransmitter. Nat. Rev. Neurosci. 3, 748–755 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Barres, B.A. & Smith, S.J. Neurobiology. Cholesterol—making or breaking the synapse. Science 294, 1296–1297 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Simard, M., Arcuino, G., Takano, T., Liu, Q.S. & Nedergaard, M. Signaling at the gliovascular interface. J. Neurosci. 23, 9254–9262 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kacem, K., Lacombe, P., Seylaz, J. & Bonvento, G. Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia 23, 1–10 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Pekny, M. & Pekna, M. Astrocyte intermediate filaments in CNS pathologies and regeneration. J. Pathol. 204, 428–437 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Halassa, M.M., Fellin, T., Takano, H., Dong, J.H. & Haydon, P.G. Synaptic islands defined by the territory of a single astrocyte. J. Neurosci. 27, 6473–6477 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bushong, E.A., Martone, M.E., Jones, Y.Z. & Ellisman, M.H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22, 183–192 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6, 43–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Paulson, O.B. & Newman, E.A. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237, 896–898 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Metea, M.R., Kofuji, P. & Newman, E.A. Neurovascular coupling is not mediated by potassium siphoning from glial cells. J. Neurosci. 27, 2468–2471 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Filosa, J.A. et al. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat. Neurosci. 9, 1397–1403 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Hamel, E. Perivascular nerves and the regulation of cerebrovascular tone. J. Appl. Physiol. 100, 1059–1064 (2006).

    Article  PubMed  Google Scholar 

  33. Rancillac, A. et al. Glutamatergic control of microvascular tone by distinct GABA neurons in the cerebellum. J. Neurosci. 26, 6997–7006 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cauli, B. et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci. 24, 8940–8949 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cohen, Z., Bonvento, G., Lacombe, P. & Hamel, E. Serotonin in the regulation of brain microcirculation. Prog. Neurobiol. 50, 335–362 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Reis, D. & Iadecola, C. Intrinsic central regulation of cerebral blood flow and metabolism in relation to volume transmission. in Volume Transmission in the Brain (eds. Fuxe, K. & Agnati, L.) 523–538 (Raven Press, New York, 1991).

    Google Scholar 

  37. Metea, M.R. & Newman, E.A. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J. Neurosci. 26, 2862–2870 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mulligan, S.J. & MacVicar, B.A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431, 195–199 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Winship, I.R., Plaa, N. & Murphy, T.H. Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo. J. Neurosci. 27, 6268–6272 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, X. et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9, 816–823 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Volterra, A. & Meldolesi, J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6, 626–640 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Nett, W.J., Oloff, S.H. & McCarthy, K.D. Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J. Neurophysiol. 87, 528–537 (2002).

    Article  PubMed  Google Scholar 

  43. Parri, H.R., Gould, T.M. & Crunelli, V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat. Neurosci. 4, 803–812 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Devor, A. et al. Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level–dependent signal. J. Neurosci. 27, 4452–4459 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peppiatt, C.M., Howarth, C., Mobbs, P. & Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tamaki, K., Mayhan, W. & Heistad, D. Effects of vasodilator stimuli on resistance of large and small cerebral vessels. Am. J. Physiol. 251, H1176–H1182 (1986).

    CAS  PubMed  Google Scholar 

  47. Xu, H.L. & Pelligrino, D.A. ATP release and hydrolysis contributes to pial arteriolar dilations elicited by neuronal activation. Exp. Physiol. 92, 647–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Segal, S.S. Regulation of blood flow in the microcirculation. Microcirculation 12, 33–45 (2005).

    Article  PubMed  Google Scholar 

  49. Leffler, C.W., Parfenova, H., Fedinec, A.L., Basuroy, S. & Tcheranova, D. Contributions of astrocytes and CO to pial arteriolar dilation to glutamate in newborn pigs. Am. J. Physiol. Heart Circ. Physiol. 291, H2897–H2904 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Chaban, V.V., Lakhter, A.J. & Micevych, P. A membrane estrogen receptor mediates intracellular calcium release in astrocytes. Endocrinology 145, 3788–3795 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Dreher, J.C. et al. Menstrual cycle phase modulates reward-related neural function in women. Proc. Natl. Acad. Sci. USA 104, 2465–2470 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Attwell, D. & Laughlin, S.B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Lebon, V. et al. Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J. Neurosci. 22, 1523–1531 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Oz, G. et al. Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J. Neurosci. 24, 11273–11279 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lovatt, D. et al. The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J. Neurosci. (in the press) (2007).

  56. Cotrina, M.L. et al. Connexins regulate calcium signaling by controlling ATP release. Proc. Natl. Acad. Sci. USA 95, 15735–15740 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, J.M. et al. ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40, 971–982 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Del Valle-Rodriguez, A. et al. Metabotropic Ca2+ channel–induced Ca2+ release and ATP-dependent facilitation of arterial myocyte contraction. Proc. Natl. Acad. Sci. USA 103, 4316–4321 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Berridge, M.J., Bootman, M.D. & Roderick, H.L. Calcium signaling: dynamics, homeostasis and remodeling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Dunwiddie, T.V. & Masino, S.A. The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24, 31–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Chuquet, J., Hollender, L. & Nimchinsky, E.A. High-resolution in vivo imaging of the neurovascular unit during spreading depression. J. Neurosci. 27, 4036–4044 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Takano, T., Han, X., Deane, R., Zlokovic, B. & Nedergaard, M. Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer's disease. Ann. NY Acad. Sci. 1097, 40–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Faraci, F.M. & Heistad, D.D. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol. Rev. 78, 53–97 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Cipolla, M.J. Cerebrovascular function in pregnancy and eclampsia. Hypertension 50, 14–24 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Hill, M.A., Sun, Z., Martinez-Lemus, L. & Meininger, G.A. New technologies for dissecting the arteriolar myogenic response. Trends Pharmacol. Sci. 28, 308–315 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Fleming, I. & Busse, R. Endothelium-derived epoxyeicosatrienoic acids and vascular function. Hypertension 47, 629–633 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Iadecola, C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci. 16, 206–214 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Astrup, J. et al. Evidence against H+ and K+ as main factors for the control of cerebral blood flow: a microelectrode study. Ciba Found. Symp. 56, 313–337 (1978).

    CAS  Google Scholar 

  70. Frahm, J., Kruger, G., Merboldt, K.D. & Kleinschmidt, A. Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn. Reson. Med. 35, 143–148 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Ances, B.M. Coupling of changes in cerebral blood flow with neural activity: what must initially dip must come back up. J. Cereb. Blood Flow Metab. 24, 1–6 (2004).

    Article  PubMed  Google Scholar 

  72. Thompson, J.K., Peterson, M.R. & Freeman, R.D. Single-neuron activity and tissue oxygenation in the cerebral cortex. Science 299, 1070–1072 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Ances, B.M., Buerk, D.G., Greenberg, J.H. & Detre, J.A. Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats. Neurosci. Lett. 306, 106–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Mintun, M.A. et al. Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc. Natl. Acad. Sci. USA 98, 6859–6864 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rubio, R., Berne, R.M., Bockman, E.L. & Curnish, R.R. Relationship between adenosine concentration and oxygen supply in rat brain. Am. J. Physiol. 228, 1896–1902 (1975).

    Article  CAS  PubMed  Google Scholar 

  76. Phillis, J.W. Adenosine and adenine nucleotides as regulators of cerebral blood flow: roles of acidosis, cell swelling and KATP channels. Crit. Rev. Neurobiol. 16, 237–270 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Iadecola, C. & Niwa, K. Nitric oxide. in Cerebral Blood Flow and Metabolism (eds. Edvinsson, L. & Krause, D.N.) 295–310 (Lippincott, Williams and Wilkins, Philadelphia, 2002).

    Google Scholar 

  78. Yang, G., Huard, J.M., Beitz, A.J., Ross, M.E. & Iadecola, C. Stellate neurons mediate functional hyperemia in the cerebellar molecular layer. J. Neurosci. 20, 6968–6973 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang, G., Zhang, Y., Ross, M.E. & Iadecola, C. Attenuation of activity-induced increases in cerebellar blood flow in mice lacking neuronal nitric oxide synthase. Am. J. Physiol. Heart Circ. Physiol. 285, H298–H304 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, H., Hitron, I.M., Iadecola, C. & Pickel, V.M. Synaptic and vascular associations of neurons containing cyclooxygenase-2 and nitric oxide synthase in rat somatosensory cortex. Cereb. Cortex 15, 1250–1260 (2005).

    Article  PubMed  Google Scholar 

  81. Niwa, K., Araki, E., Morham, S.G., Ross, M.E. & Iadecola, C. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. J. Neurosci. 20, 763–770 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Niwa, K., Haensel, C., Ross, M.E. & Iadecola, C. Cyclooxygenase-1 participates in selected vasodilator responses of the cerebral circulation. Circ. Res. 88, 600–608 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Koehler, R.C., Gebremedhin, D. & Harder, D.R. Role of astrocytes in cerebrovascular regulation. J. Appl. Physiol. 100, 307–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Sagher, O. et al. Live computerized videomicroscopy of cerebral microvessels in brain slices. J. Cereb. Blood Flow Metab. 13, 676–682 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Harder, D.R. Increased sensitivity of cat cerebral arteries to serotonin upon elevation of transmural pressure. Pflugers Arch. 411, 698–700 (1988).

    Article  CAS  PubMed  Google Scholar 

  86. Garcia-Roldan, J.L. & Bevan, J.A. Flow-induced constriction and dilation of cerebral resistance arteries. Circ. Res. 66, 1445–1448 (1990).

    Article  CAS  PubMed  Google Scholar 

  87. Armstead, W.M., Mirro, R., Busija, D.W. & Leffler, C.W. Vascular responses to vasopressin are tone-dependent in the cerebral circulation of the newborn pig. Circ. Res. 64, 136–144 (1989).

    Article  CAS  PubMed  Google Scholar 

  88. Sloan, T.B. Anesthetics and the brain. Anesthesiol. Clin. North America 20, 265–292 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Lindauer, U., Villringer, A. & Dirnagl, U. Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics. Am. J. Physiol. 264, H1223–H1228 (1993).

    CAS  PubMed  Google Scholar 

  90. Ueki, M., Mies, G. & Hossmann, K.A. Effect of alpha-chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat. Acta Anaesthesiol. Scand. 36, 318–322 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. Sicard, K. et al. Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: implications for functional MRI studies. J. Cereb. Blood Flow Metab. 23, 472–481 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Martin, C., Martindale, J., Berwick, J. & Mayhew, J. Investigating neural-hemodynamic coupling and the hemodynamic response function in the awake rat. Neuroimage 32, 33–48 (2006).

    Article  PubMed  Google Scholar 

  93. Ferezou, I., Bolea, S. & Petersen, C.C. Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron 50, 617–629 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Golgi, C. Sulla Fina Anatomia degli Organi Centrali del Sistema Nervoso (Hoepli, Milano, 1886).

    Google Scholar 

  95. Locovei, S., Bao, L. & Dahl, G. Pannexin 1 in erythrocytes: function without a gap. Proc. Natl. Acad. Sci. USA 103, 7655–7659 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Marrelli, S.P. Mechanisms of endothelial P2Y(1)- and P2Y(2)-mediated vasodilatation involve differential [Ca2+]i responses. Am. J. Physiol. Heart Circ. Physiol. 281, H1759–H1766 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T. Takano and J. Pierce provided invaluable help with the figures. This work was supported by grants from the US National Institutes of Health (NS37853 and HL18974 to C.I., and NS56188 and NS50315 to M.N.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Costantino Iadecola or Maiken Nedergaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iadecola, C., Nedergaard, M. Glial regulation of the cerebral microvasculature. Nat Neurosci 10, 1369–1376 (2007). https://doi.org/10.1038/nn2003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2003

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing