Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization

Abstract

We identified a mutation in Aats-gly (also known as gars or glycyl-tRNA synthetase), the Drosophila melanogaster ortholog of the human GARS gene that is associated with Charcot-Marie-Tooth neuropathy type 2D (CMT2D), from a mosaic genetic screen. Loss of gars in Drosophila neurons preferentially affects the elaboration and stability of terminal arborization of axons and dendrites. The human and Drosophila genes each encode both a cytoplasmic and a mitochondrial isoform. Using additional mutants that selectively disrupt cytoplasmic or mitochondrial protein translation, we found that cytoplasmic protein translation is required for terminal arborization of both dendrites and axons during development. In contrast, disruption of mitochondrial protein translation preferentially affects the maintenance of dendritic arborization in adults. We also provide evidence that human GARS shows equivalent functions in Drosophila, and that CMT2D causal mutations show loss-of-function properties. Our study highlights different demands of protein translation for the development and maintenance of axons and dendrites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Projection neurons homozygous for team have severely reduced dendritic and axonal terminal arborization.
Figure 2: Mutations in gars cause the team phenotype.
Figure 3: Developmental studies of garsEX34/EX34 phenotypes.
Figure 4: Drosophila GARS localizes to the cytoplasm and mitochondria in projection neurons and Cos-7 cells.
Figure 5: Cytoplasmic protein translation is required for the dendritic and axonal terminal arborization during development.
Figure 6: Projection neuron clones defective for mitochondrial protein translation show progressive defects in dendritic, but not axonal, terminals.
Figure 7: Dendritic and axonal phenotypes in MB γ neurons homozygous for garsEX34, wars4 and tko3.
Figure 8: Function of human GARS in Drosophila projection neurons.

Similar content being viewed by others

References

  1. Steward, O. & Schuman, E.M. Compartmentalized synthesis and degradation of proteins in neurons. Neuron 40, 347–359 (2003).

    Article  CAS  Google Scholar 

  2. Martin, K.C. Local protein synthesis during axon guidance and synaptic plasticity. Curr. Opin. Neurobiol. 14, 305–310 (2004).

    Article  CAS  Google Scholar 

  3. Piper, M. & Holt, C. RNA translation in axons. Annu. Rev. Cell Dev. Biol. 20, 505–523 (2004).

    Article  CAS  Google Scholar 

  4. Bailey, C.H., Bartsch, D. & Kandel, E.R. Toward a molecular definition of long-term memory storage. Proc. Natl. Acad. Sci. USA 93, 13445–13452 (1996).

    Article  CAS  Google Scholar 

  5. Horton, A.C. et al. Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48, 757–771 (2005).

    Article  CAS  Google Scholar 

  6. Grossman, A.W., Aldridge, G.M., Weiler, I.J. & Greenough, W.T. Local protein synthesis and spine morphogenesis: Fragile X syndrome and beyond. J. Neurosci. 26, 7151–7155 (2006).

    Article  CAS  Google Scholar 

  7. Lee, J.W. et al. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443, 50–55 (2006).

    Article  CAS  Google Scholar 

  8. Li, Z., Okamoto, K., Hayashi, Y. & Sheng, M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873–887 (2004).

    Article  CAS  Google Scholar 

  9. Stowers, R.S., Megeath, L.J., Gorska-Andrzejak, J., Meinertzhagen, I.A. & Schwarz, T.L. Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 36, 1063–1077 (2002).

    Article  CAS  Google Scholar 

  10. Verstreken, P. et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47, 365–378 (2005).

    Article  CAS  Google Scholar 

  11. Guo, X. et al. The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 47, 379–393 (2005).

    Article  CAS  Google Scholar 

  12. Chan, D.C. Mitochondria: dynamic organelles in disease, aging and development. Cell 125, 1241–1252 (2006).

    Article  CAS  Google Scholar 

  13. Kujoth, G.C. et al. Mitochondrial DNA mutations, oxidative stress and apoptosis in mammalian aging. Science 309, 481–484 (2005).

    Article  CAS  Google Scholar 

  14. Antonellis, A. et al. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am. J. Hum. Genet. 72, 1293–1299 (2003).

    Article  CAS  Google Scholar 

  15. Shy, M.E. Charcot-Marie-Tooth disease: an update. Curr. Opin. Neurol. 17, 579–585 (2004).

    Article  CAS  Google Scholar 

  16. Jefferis, G.S., Marin, E.C., Stocker, R.F. & Luo, L. Target neuron prespecification in the olfactory map of Drosophila. Nature 414, 204–208 (2001).

    Article  CAS  Google Scholar 

  17. Marin, E.C., Jefferis, G.S., Komiyama, T., Zhu, H. & Luo, L. Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243–255 (2002).

    Article  CAS  Google Scholar 

  18. Wong, A.M., Wang, J.W. & Axel, R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229–241 (2002).

    Article  CAS  Google Scholar 

  19. Jefferis, G.S. et al. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128, 1187–1203 (2007).

    Article  CAS  Google Scholar 

  20. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  Google Scholar 

  21. Robinson, I.M., Ranjan, R. & Schwarz, T.L. Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C(2)A domain. Nature 418, 336–340 (2002).

    Article  CAS  Google Scholar 

  22. Ng, M. et al. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36, 463–474 (2002).

    Article  CAS  Google Scholar 

  23. Berger, J. et al. Genetic mapping with SNP markers in Drosophila. Nat. Genet. 29, 475–481 (2001).

    Article  CAS  Google Scholar 

  24. Zhai, R.G. et al. Mapping Drosophila mutations with molecularly defined P element insertions. Proc. Natl. Acad. Sci. USA 100, 10860–10865 (2003).

    Article  CAS  Google Scholar 

  25. Shiba, K., Schimmel, P., Motegi, H. & Noda, T. Human glycyl-tRNA synthetase. Wide divergence of primary structure from bacterial counterpart and species-specific aminoacylation. J. Biol. Chem. 269, 30049–30055 (1994).

    CAS  PubMed  Google Scholar 

  26. Ibba, M. & Soll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69, 617–650 (2000).

    Article  CAS  Google Scholar 

  27. Jefferis, G.S. et al. Developmental origin of wiring specificity in the olfactory system of Drosophila. Development 131, 117–130 (2004).

    Article  CAS  Google Scholar 

  28. Turner, R.J., Lovato, M. & Schimmel, P. One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. J. Biol. Chem. 275, 27681–27688 (2000).

    CAS  PubMed  Google Scholar 

  29. Chang, K.J. & Wang, C.C. Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J. Biol. Chem. 279, 13778–13785 (2004).

    Article  CAS  Google Scholar 

  30. Seshaiah, P. & Andrew, D.J. WRS-85D: a tryptophanyl-tRNA synthetase expressed to high levels in the developing Drosophila salivary gland. Mol. Biol. Cell 10, 1595–1608 (1999).

    Article  CAS  Google Scholar 

  31. Royden, C.S., Pirrotta, V. & Jan, L.Y. The tko locus, site of a behavioral mutation in D. melanogaster, codes for a protein homologous to prokaryotic ribosomal protein S12. Cell 51, 165–173 (1987).

    Article  CAS  Google Scholar 

  32. Toivonen, J.M. et al. Technical knockout, a Drosophila model of mitochondrial deafness. Genetics 159, 241–254 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Heisenberg, M. Mushroom body memoir: from maps to models. Nat. Rev. Neurosci. 4, 266–275 (2003).

    Article  CAS  Google Scholar 

  34. Lee, T., Lee, A. & Luo, L. Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126, 4065–4076 (1999).

    CAS  PubMed  Google Scholar 

  35. Watts, R.J., Hoopfer, E.D. & Luo, L. Axon pruning during Drosophila metamorphosis: evidence for local degeneration and requirement of the ubiquitin-proteasome system. Neuron 38, 871–885 (2003).

    Article  CAS  Google Scholar 

  36. Sivakumar, K. et al. Phenotypic spectrum of disorders associated with glycyl-tRNA synthetase mutations. Brain 128, 2304–2314 (2005).

    Article  Google Scholar 

  37. Dubourg, O. et al. The G526R glycyl-tRNA synthetase gene mutation in distal hereditary motor neuropathy type V. Neurology 66, 1721–1726 (2006).

    Article  CAS  Google Scholar 

  38. Del Bo, R. et al. Coexistence of CMT-2D and distal SMA-V phenotypes in an Italian family with a GARS gene mutation. Neurology 66, 752–754 (2006).

    Article  CAS  Google Scholar 

  39. Bonnefond, L. et al. Toward the full set of human mitochondrial aminoacyl-tRNA synthetases: characterization of AspRS and TyrRS. Biochemistry 44, 4805–4816 (2005).

    Article  CAS  Google Scholar 

  40. Mudge, S.J. et al. Complex organisation of the 5′ end of the human glycine tRNA synthetase gene. Gene 209, 45–50 (1998).

    Article  CAS  Google Scholar 

  41. Lee, S.W., Cho, B.H., Park, S.G. & Kim, S. Aminoacyl-tRNA synthetase complexes: beyond translation. J. Cell Sci. 117, 3725–3734 (2004).

    Article  CAS  Google Scholar 

  42. Goldberg, G.S., Lampe, P.D. & Nicholson, B.J. Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat. Cell Biol. 1, 457–459 (1999).

    Article  CAS  Google Scholar 

  43. Gorska-Andrzejak, J. et al. Mitochondria are redistributed in Drosophila photoreceptors lacking milton, a kinesin-associated protein. J. Comp. Neurol. 463, 372–388 (2003).

    Article  CAS  Google Scholar 

  44. Overly, C.C., Rieff, H.I. & Hollenbeck, P.J. Organelle motility and metabolism in axons versus dendrites of cultured hippocampal neurons. J. Cell Sci. 109, 971–980 (1996).

    CAS  PubMed  Google Scholar 

  45. Seburn, K.L., Nangle, L.A., Cox, G.A., Schimmel, P. & Burgess, R.W. An active dominant mutation of glycyl-tRNA synthetase causes neuropathy in a Charcot-Marie-Tooth 2D mouse model. Neuron 51, 715–726 (2006).

    Article  CAS  Google Scholar 

  46. Antonellis, A. et al. Functional analyses of glycyl-tRNA synthetase mutations suggest a key role for tRNA-charging enzymes in peripheral axons. J. Neurosci. 26, 10397–10406 (2006).

    Article  CAS  Google Scholar 

  47. Jordanova, A. et al. Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nat. Genet. 38, 197–202 (2006).

    Article  CAS  Google Scholar 

  48. Bilen, J. & Bonini, N.M. Drosophila as a model for human neurodegenerative disease. Annu. Rev. Genet. 39, 153–171 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R.J. Watts, E.D. Hoopfer and O. Schuldiner for contributions to mosaic genetic screening; H.T. Jocobs, D.J. Andrew, the Bloomington Drosophila Stock Center and the Kyoto Drosophila Genetic Resource Center for fly stocks; D. Berdnik, T. Komiyama, O. Schuldiner, B. Tasic and H. Zhu for comments on the manuscripts, and M. Miura for supporting T.C. to complete this work. T.C. was a recipient of a Overseas Research Fellowship from Japan Science and Technology Agency and a Postdoctoral Fellowship for Research Abroad from Japan Society for the Promotion of Science. This work was supported by US National Institutes of Health grant R01-DC005982 to L.L. and by the Sumitomo Foundation and a grant from Japan Society for the Promotion of Science to T.C. L.L. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

T.C. designed the study with the help of L.L. T.C. conducted the experimental work and analyzed the data, D.L. assisted with the forward genetic screen, and T.C. and L.L. wrote the manuscript.

Corresponding author

Correspondence to Liqun Luo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Lack of axon terminal arborization in team−/− projection neurons. (PDF 794 kb)

Supplementary Fig. 2

MARCM rescue experiments of garsEX34/EX34 projection neuron clones with either cytoplasmic or mitochondrial GARS. (PDF 3795 kb)

Supplementary Fig. 3

Generation of Df(3L)mito. (PDF 120 kb)

Supplementary Methods (PDF 102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chihara, T., Luginbuhl, D. & Luo, L. Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization. Nat Neurosci 10, 828–837 (2007). https://doi.org/10.1038/nn1910

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1910

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing