Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism

Abstract

The development of dendritic spines is thought to be crucial for synaptic plasticity. Dendritic spines are retracted upon Eph receptor A4 (EphA4) activation, but the mechanisms that control this process are not well understood. Here we report an important function of cyclin-dependent kinase 5 (Cdk5) in EphA4-dependent spine retraction in mice. We found that blocking Cdk5 activity inhibits ephrin-A1–triggered spine retraction and reduction of mEPSC frequency at hippocampal synapses. The activation of EphA4 resulted in the recruitment of Cdk5 to EphA4, leading to the tyrosine phosphorylation and activation of Cdk5. EphA4 and Cdk5 then enhanced the activation of ephexin1, a guanine-nucleotide exchange factor that regulates activation of the small Rho GTPase RhoA. The association between EphA4 and ephexin1 was significantly reduced in Cdk5−/− brains and Cdk5-dependent phosphorylation of ephexin1 was required for the ephrin-A1–mediated regulation of spine density. These findings suggest that ephrin-A1 promotes EphA4-dependent spine retraction through the activation of Cdk5 and ephexin1, which in turn modulates actin cytoskeletal dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of Cdk5 activity attenuates the ephrin-A1–stimulated dendritic spine retraction of pyramidal neurons in organotypic hippocampal slices.
Figure 2: EphA4 activation recruits the Cdk5-p35 complex and stimulates tyrosine phosphorylation of Cdk5.
Figure 3: Cdk5 activity regulates dendritic spine retraction in hippocampal neurons.
Figure 4: Ephrin-A1 does not reduce the spine density and mEPSC frequency in Cdk5−/− hippocampal neurons.
Figure 5: Cdk5 activity regulates ephrin-A1–stimulated EphA4 activation and RhoA activity in neurons.
Figure 6: Ephexin1 is phosphorylated by Cdk5-p35.
Figure 7: Cdk5 phosphorylation of ephexin1 regulates EphA4-dependent GEF activity.
Figure 8: Cdk5-dependent phosphorylation of ephexin1 is required for the ephrin-A1–mediated spine retraction.

Similar content being viewed by others

References

  1. Ethell, I.M. & Pasquale, E.B. Molecular mechanisms of dendritic spine development and remodeling. Prog. Neurobiol. 75, 161–205 (2005).

    Article  CAS  Google Scholar 

  2. Henkemeyer, M., Itkis, O.S., Ngo, M., Hickmott, P.W. & Ethell, I.M. Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J. Cell Biol. 163, 1313–1326 (2003).

    Article  CAS  Google Scholar 

  3. Contractor, A. et al. Trans-synaptic Eph receptor-ephrin signaling in hippocampal mossy fiber LTP. Science 296, 1864–1869 (2002).

    Article  CAS  Google Scholar 

  4. Grunwald, I.C. et al. Hippocampal plasticity requires postsynaptic ephrinBs. Nat. Neurosci. 7, 33–40 (2004).

    Article  CAS  Google Scholar 

  5. O'Leary, D.D. & Wilkinson, D.G. Eph receptors and ephrins in neural development. Curr. Opin. Neurobiol. 9, 65–73 (1999).

    Article  CAS  Google Scholar 

  6. Wilkinson, D.G. Multiple roles of EPH receptors and ephrins in neural development. Nat. Rev. Neurosci. 2, 155–164 (2001).

    Article  CAS  Google Scholar 

  7. Gerlai, R. Eph receptors and neural plasticity. Nat. Rev. Neurosci. 2, 205–209 (2001).

    Article  CAS  Google Scholar 

  8. Henderson, J.T. et al. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32, 1041–1056 (2001).

    Article  CAS  Google Scholar 

  9. Murai, K.K., Nguyen, L.N., Irie, F., Yamaguchi, Y. & Pasquale, E.B. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat. Neurosci. 6, 153–160 (2003).

    Article  CAS  Google Scholar 

  10. Dalva, M.B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945–956 (2000).

    Article  CAS  Google Scholar 

  11. Penzes, P. et al. Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37, 263–274 (2003).

    Article  CAS  Google Scholar 

  12. Murai, K.K. & Pasquale, E.B. New exchanges in eph-dependent growth cone dynamics. Neuron 46, 161–163 (2005).

    Article  CAS  Google Scholar 

  13. Nakayama, A.Y., Harms, M.B. & Luo, L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 20, 5329–5338 (2000).

    Article  CAS  Google Scholar 

  14. Irie, F. & Yamaguchi, Y. EphB receptors regulate dendritic spine development via intersectin, Cdc42 and N-WASP. Nat. Neurosci. 5, 1117–1118 (2002).

    Article  CAS  Google Scholar 

  15. Morabito, M.A., Sheng, M. & Tsai, L.H. Cyclin-dependent kinase 5 phosphorylates the N-terminal domain of the postsynaptic density protein PSD-95 in neurons. J. Neurosci. 24, 865–876 (2004).

    Article  CAS  Google Scholar 

  16. Zukerberg, L.R. et al. Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26, 633–646 (2000).

    Article  CAS  Google Scholar 

  17. Sasaki, Y. et al. Fyn and Cdk5 mediate semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral cortex. Neuron 35, 907–920 (2002).

    Article  CAS  Google Scholar 

  18. Fu, A.K. et al. Cdk5 is involved in neuregulin-induced AChR expression at the neuromuscular junction. Nat. Neurosci. 4, 374–381 (2001).

    Article  CAS  Google Scholar 

  19. Yamaguchi, Y. & Pasquale, E.B. Eph receptors in the adult brain. Curr. Opin. Neurobiol. 14, 288–296 (2004).

    Article  CAS  Google Scholar 

  20. Flanagan, J.G. & Vanderhaeghen, P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21, 309–345 (1998).

    Article  CAS  Google Scholar 

  21. Ching, Y.P., Qi, Z. & Wang, J.H. Cloning of three novel neuronal Cdk5 activator binding proteins. Gene 242, 285–294 (2000).

    Article  CAS  Google Scholar 

  22. Cheng, K. & Ip, N.Y. Cdk5: a new player at synapses. Neurosignals 12, 180–190 (2003).

    Article  CAS  Google Scholar 

  23. Knoll, B. & Drescher, U. Src family kinases are involved in EphA receptor-mediated retinal axon guidance. J. Neurosci. 24, 6248–6257 (2004).

    Article  Google Scholar 

  24. Sahin, M. et al. Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron 46, 191–204 (2005).

    Article  CAS  Google Scholar 

  25. Cowan, C.W. et al. Vav family GEFs link activated Ephs to endocytosis and axon guidance. Neuron 46, 205–217 (2005).

    Article  CAS  Google Scholar 

  26. Tolias, K.F. et al. The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron 45, 525–538 (2005).

    Article  CAS  Google Scholar 

  27. Cheng, Q. et al. Cdk5/p35 and Rho-kinase mediate ephrin-A5-induced signaling in retinal ganglion cells. Mol. Cell. Neurosci. 24, 632–645 (2003).

    Article  CAS  Google Scholar 

  28. Egea, J. et al. Regulation of EphA 4 kinase activity is required for a subset of axon guidance decisions suggesting a key role for receptor clustering in Eph function. Neuron 47, 515–528 (2005).

    Article  CAS  Google Scholar 

  29. Ehlers, M.D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6, 231–242 (2003).

    Article  CAS  Google Scholar 

  30. Lai, K.O., Ip, F.C., Cheung, J., Fu, A.K. & Ip, N.Y. Expression of Eph receptors in skeletal muscle and their localization at the neuromuscular junction. Mol. Cell. Neurosci. 17, 1034–1047 (2001).

    Article  CAS  Google Scholar 

  31. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  Google Scholar 

  32. Shamah, S.M. et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105, 233–244 (2001).

    Article  CAS  Google Scholar 

  33. Dhavan, R. & Tsai, L.H. A decade of CDK5. Nat. Rev. Mol. Cell Biol. 2, 749–759 (2001).

    Article  CAS  Google Scholar 

  34. Cheung, Z.H., Fu, A.K.Y. & Ip, N.Y. Synaptic roles of Cdk5: implications in higher cognitive functions and neurodegenerative diseases. Neuron 50, 13–18 (2006).

    Article  CAS  Google Scholar 

  35. Fu, W.Y., Fu, A.K., Lok, K.C., Ip, F.C. & Ip, N.Y. Induction of Cdk5 activity in rat skeletal muscle after nerve injury. Neuroreport 13, 243–247 (2002).

    Article  CAS  Google Scholar 

  36. Fu, A.K. et al. Aberrant motor axon projection, acetylcholine receptor clustering, and neurotransmission in cyclin-dependent kinase 5 null mice. Proc. Natl. Acad. Sci. USA 102, 15224–15229 (2005).

    Article  CAS  Google Scholar 

  37. Yuste, R. & Bonhoeffer, T. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat. Rev. Neurosci. 5, 24–34 (2004).

    Article  CAS  Google Scholar 

  38. Bryan, B. et al. GEFT, a Rho family guanine nucleotide exchange factor, regulates neurite outgrowth and dendritic spine formation. J. Biol. Chem. 279, 45824–45832 (2004).

    Article  CAS  Google Scholar 

  39. Ryan, X.P. et al. The Rho-specific GEF Lfc interacts with neurabin and spinophilin to regulate dendritic spine morphology. Neuron 47, 85–100 (2005).

    Article  CAS  Google Scholar 

  40. Zhang, H., Webb, D.J., Asmussen, H., Niu, S. & Horwitz, A.F.A. GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J. Neurosci. 25, 3379–3388 (2005).

    Article  CAS  Google Scholar 

  41. Ohshima, T. et al. Impairment of hippocampal long-term depression and defective spatial learning and memory in p35 mice. J. Neurochem. 94, 917–925 (2005).

    Article  CAS  Google Scholar 

  42. Kennedy, M.B., Beale, H.C., Carlisle, H.J. & Washburn, L.R. Integration of biochemical signalling in spines. Nat. Rev. Neurosci. 6, 423–434 (2005).

    Article  CAS  Google Scholar 

  43. Muller, D., Toni, N. & Buchs, P.A. Spine changes associated with long-term potentiation. Hippocampus 10, 596–604 (2000).

    Article  CAS  Google Scholar 

  44. Toni, N., Buchs, P.A., Nikonenko, I., Bron, C.R. & Muller, D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421–425 (1999).

    Article  CAS  Google Scholar 

  45. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999).

    Article  CAS  Google Scholar 

  46. Zhou, Q., Homma, K.J. & Poo, M.M. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749–757 (2004).

    Article  CAS  Google Scholar 

  47. Nagerl, U.V., Eberhorn, N., Cambridge, S.B. & Bonhoeffer, T. Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44, 759–767 (2004).

    Article  Google Scholar 

  48. Gerlai, R. et al. Regulation of learning by EphA receptors: a protein targeting study. J. Neurosci. 19, 9538–9549 (1999).

    Article  CAS  Google Scholar 

  49. Ip, N.Y., Li, Y., Yancopoulos, G.D. & Lindsay, R.M. Cultured hippocampal neurons show responses to BDNF, NT-3, and NT-4, but not NGF. J. Neurosci. 13, 3394–3405 (1993).

    Article  CAS  Google Scholar 

  50. Sala, C. et al. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31, 115–130 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Kulkarni and T. Curran for Cdk5-null mice, L.H. Tsai for p35-null mice, S. Hisanaga for the recombinant Cdk5-p35 protein, D. Lo for the YFP construct and W. Chau, B. Butt, C. Kwong, K. Hung, K. Ho, W.W.Y. Chien and K. Gong for excellent technical assistance. The expert advice of D. Lo and P. Greer is gratefully acknowledged. We also thank Z. Cheung and M. Zhang for critical reading of the manuscript and members of the Ip laboratory for many helpful discussions. This study was supported in part by the Research Grants Council of Hong Kong (HKUST6131/02M, 6130/03M, 6119/04M, 6421/05M and HKUST 3/03C), the Area of Excellence Scheme of the University Grants Committee (AoE/B-15/01), the Hong Kong Jockey Club, US National Institute of Child Health and Human Development grant K08 HD01384, the William Randolph Hearst Fund (to M.S.), Mental Retardation Research Center grant HD18655, and US National Institutes of Health grant NS045500 (to M.E.G.). N.Y.I. is a Croucher Foundation Senior Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Y Ip.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

EphA4 interacts with Cdk5 and p35. (PDF 478 kb)

Supplementary Fig. 2

Cdk5 is directly phosphorylated by EphA4. (PDF 379 kb)

Supplementary Fig. 3

Ephrin-A1 stimulates EphA4 clustering in cultured hippocampal neurons. (PDF 2246 kb)

Supplementary Fig. 4

Presence of EphA4, Cdk5.p35 and ephexin1 in postsynaptic densities. (PDF 472 kb)

Supplementary Fig. 5

Ephrin-A1 reduces spine density in cultured hippocampal neurons. (PDF 1864 kb)

Supplementary Fig. 6

Ephexin1 protein is phosphorylated by recombinant Cdk5.p35 using in vitro kinase assay. (PDF 574 kb)

Supplementary Fig. 7

Confocal images showing the expression of overexpressed ephexin1 in hippocampal slices. (PDF 1188 kb)

Supplementary Fig. 8

Model of regulation of spine morphogenesis by EphA4-Cdk5-ephexin1 signaling. (PDF 4228 kb)

Supplementary Methods (PDF 139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, WY., Chen, Y., Sahin, M. et al. Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci 10, 67–76 (2007). https://doi.org/10.1038/nn1811

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1811

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing