Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dyslexia and the failure to form a perceptual anchor

Abstract

In a large subgroup of dyslexic individuals (D-LDs), reading difficulties are part of a broader learning and language disability. Recent studies indicate that D-LDs perform poorly in many psychoacoustic tasks compared with individuals with normal reading ability. We found that D-LDs perform as well as normal readers in speech perception in noise and in a difficult tone comparison task. However, their performance did not improve when these same tasks were performed with a smaller stimulus set. In contrast to normal readers, they did not benefit from stimulus-specific repetitions, suggesting that they have difficulties forming perceptual anchors. These findings are inconsistent with previously suggested static models of dyslexia. Instead, we propose that D-LDs' core deficit is a general difficulty in dynamically constructing stimulus-specific predictions, deriving from deficient stimulus-specific adaptation mechanisms. This hypothesis provides a direct link between D-LDs' high-level difficulties and mechanisms at the level of specific neuronal circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Study I: frequency discrimination JNDs with and without stimulus repetition across trials among D-LDs and control individuals.
Figure 2: Correlation between frequency discrimination thresholds and working memory scores (digits backward test).
Figure 3: Speech perception thresholds of D-LDs and control individuals for large and small stimulus sets.
Figure 4: Fraction of 'within-set' speech perception errors as a function of block number.
Figure 5: Perception and memory measured by pseudoword list repetition.

Similar content being viewed by others

References

  1. Demonet, J.F., Taylor, M.J. & Chaix, Y. Developmental dyslexia. Lancet 363, 1451–1460 (2004).

    Article  Google Scholar 

  2. Shovmann, M.M. & Ahissar, M. Isolating the impact of visual perception on dyslexics' reading ability. Vision Res. 46, 3514–3525 (2006).

    Article  Google Scholar 

  3. Ramus, F. Neurobiology of dyslexia: a reinterpretation of the data. Trends Neurosci. 27, 720–726 (2004).

    Article  CAS  Google Scholar 

  4. Wright, B.A. & Zecker, S.G. Learning problems, delayed development, and puberty. Proc. Natl. Acad. Sci. USA 101, 9942–9946 (2004).

    Article  CAS  Google Scholar 

  5. Tallal, P. Auditory temporal perception, phonics, and reading disabilities in children. Brain Lang. 9, 182–198 (1980).

    Article  CAS  Google Scholar 

  6. Ahissar, M., Protopapas, A., Reid, M. & Merzenich, M.M. Auditory processing parallels reading abilities in adults. Proc. Natl. Acad. Sci. USA 97, 6832–6837 (2000).

    Article  CAS  Google Scholar 

  7. Amitay, S., Ahissar, M. & Nelken, I. Auditory processing deficits in reading disabled adults. J. Assoc. Res. Otolaryngol. 3, 302–320 (2002).

    Article  Google Scholar 

  8. Banai, K. & Ahissar, M. Poor frequency discrimination probes dyslexics with particularly impaired working memory. Audiol. Neurootol. 9, 328–340 (2004).

    Article  Google Scholar 

  9. Goswami, U. et al. Amplitude envelope onsets and developmental dyslexia: a new hypothesis. Proc. Natl. Acad. Sci. USA 99, 10911–10916 (2002).

    Article  CAS  Google Scholar 

  10. McAnally, K.I. & Stein, J.F. Auditory temporal coding in dyslexia. Proc. Biol. Sci. 263, 961–965 (1996).

    Article  CAS  Google Scholar 

  11. Hari, R. & Renvall, H. Impaired processing of rapid stimulus sequences in dyslexia. Trends Cogn. Sci. 5, 525–532 (2001).

    Article  Google Scholar 

  12. Mengler, E.D., Hogben, J.H., Michie, P. & Bishop, D.V. Poor frequency discrimination is related to oral language disorder in children: a psychoacoustic study. Dyslexia 11, 155–173 (2005).

    Article  Google Scholar 

  13. Ben-Yehudah, G., Banai, K. & Ahissar, M. Patterns of deficit in auditory temporal processing among dyslexic adults. Neuroreport 15, 627–631 (2004).

    Article  Google Scholar 

  14. France, S.J. et al. Auditory frequency discrimination in adult developmental dyslexics. Percept. Psychophys. 64, 169–179 (2002).

    Article  CAS  Google Scholar 

  15. Heath, S.M., Hogben, J.H. & Clark, C.D. Auditory temporal processing in disabled readers with and without oral language delay. J. Child Psychol. Psychiatry 40, 637–647 (1999).

    Article  CAS  Google Scholar 

  16. Wechsler, D. Wechsler Adult Intelligence Scale (WAIS-III) Administration and Scoring Manual (The Psychological Corporation, San Antonio, Texas, 1997).

    Google Scholar 

  17. Raz, N., Willerman, L. & Yama, M. On sense and senses: intelligence and auditory information processing. Pers. Individ. Dif. 8, 201–210 (1987).

    Article  Google Scholar 

  18. Deary, I.J., Bell, P.J., Bell, A.J., Campbell, M.L. & Fazal, N.D. Sensory discrimination and intelligence: testing Spearman's other hypothesis. Am. J. Psychol. 117, 1–18 (2004).

    Article  Google Scholar 

  19. Goswami, U. Why theories about developmental dyslexia require developmental designs. Trends Cogn. Sci. 7, 534–540 (2003).

    Article  Google Scholar 

  20. Hulslander, J. et al. Sensory processing, reading, IQ, and attention. J. Exp. Child Psychol. 88, 274–295 (2004).

    Article  Google Scholar 

  21. Banai, K. & Ahissar, M. Auditory processing deficits in dyslexia: task or stimulus related? Cereb. Cortex. 16, 1718–1728 (2006).

    Article  Google Scholar 

  22. Romo, R. & Salinas, E. Flutter discrimination: neural codes, perception, memory and decision making. Nat. Rev. Neurosci. 4, 203–218 (2003).

    Article  CAS  Google Scholar 

  23. Brosnan, M. et al. Executive functioning in adults and children with developmental dyslexia. Neuropsychologia 40, 2144–2155 (2002).

    Article  Google Scholar 

  24. Helland, T. & Asbjornsen, A. Executive functions in dyslexia. Child Neuropsychol 6, 37–48 (2000).

    Article  CAS  Google Scholar 

  25. Swanson, H.L. Working memory in learning disability subgroups. J. Exp. Child Psychol. 56, 87–114 (1993).

    Article  CAS  Google Scholar 

  26. Sperling, A.J., Lu, Z.L., Manis, F.R. & Seidenberg, M.S. Deficits in perceptual noise exclusion in developmental dyslexia. Nat. Neurosci. 8, 862–863 (2005).

    Article  CAS  Google Scholar 

  27. Hartley, D.E. & Moore, D.R. Auditory processing efficiency deficits in children with developmental language impairments. J. Acoust. Soc. Am. 112, 2962–2966 (2002).

    Article  Google Scholar 

  28. McArthur, G.M. & Bishop, D.V.M. Frequency discrimination deficits in people with specific language impairment: reliability, validity, and linguistic correlates. J. Speech Lang. Hear. Res. 47, 527–541 (2004).

    Article  CAS  Google Scholar 

  29. Halliday, L.F. & Bishop, D.V. Frequency discrimination and literacy skills in children with mild to moderate sensorineural hearing loss. J. Speech Lang. Hear. Res. 48, 1187–1203 (2005).

    Article  CAS  Google Scholar 

  30. Harris, J. Discrimination of pitch: suggestions toward method and procedure. Am. J. Psychol. 61, 309–322 (1948).

    Article  CAS  Google Scholar 

  31. König, E. Effect of time on pitch discrimination thresholds under several psychophysical procedures; Comparison with intensity discrimination thresholds. J. Acoust. Soc. Am. 29, 606 (1957).

    Article  Google Scholar 

  32. Mori, S. & Ward, L.M. Intensity and frequency resolution: masking of absolute identification and fixed and roving discrimination. J. Acoust. Soc. Am. 91, 246–255 (1992).

    Article  CAS  Google Scholar 

  33. Clement, S., Demany, L. & Semal, C. Memory for pitch versus memory for loudness. J. Acoust. Soc. Am. 106, 2805–2811 (1999).

    Article  CAS  Google Scholar 

  34. Näätänen, R. Attention and Brain Function (L. Erlbaum, Hillsdale, New Jersey, 1992).

    Google Scholar 

  35. Baldeweg, T., Richardson, A., Watkins, S., Foale, C. & Gruzelier, J. Impaired auditory frequency discrimination in dyslexia detected with mismatch evoked potentials. Ann. Neurol. 45, 495–503 (1999).

    Article  CAS  Google Scholar 

  36. Renvall, H. & Hari, R. Diminished auditory mismatch fields in dyslexic adults. Ann. Neurol. 53, 551–557 (2003).

    Article  Google Scholar 

  37. Banai, K., Nicol, T., Zecker, S.G. & Kraus, N. Brainstem timing: implications for cortical processing and literacy. J. Neurosci. 25, 9850–9857 (2005).

    Article  CAS  Google Scholar 

  38. Maurer, U., Bucker, K., Brem, S. & Brandeis, D. Altered responses to tone and phoneme mismatch in kindergarteners at familial dyslexia risk. Neuroreport, 14, 2245–2250 (2003).

    Article  Google Scholar 

  39. Haenschel, C., Vernon, D.J., Dwivedi, P., Gruzelier, J.H. & Baldeweg, T. Event-related brain potential correlates of human auditory sensory memory-trace formation. J. Neurosci. 25, 10494–10501 (2005).

    Article  CAS  Google Scholar 

  40. Kujala, T., Lovio, R., Lepistö, T., Laasonen, M. & Näätänen, R. Evaluation of multi-attribute auditory discrimination in dyslexia with the mismatch negativity. Clin. Neurophysiol. 117, 885–893 (2006).

    Article  CAS  Google Scholar 

  41. Baldeweg, T. Repetition effects to sounds: evidence for predictive coding in the auditory system. Trends Cogn. Sci. 10, 93–94 (2006).

    Article  Google Scholar 

  42. Grill-Spector, K., Henson, R. & Martin, A. Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn. Sci. 10, 14–23 (2006).

    Article  Google Scholar 

  43. Sperling, A.J., Lu, Z.L. & Manis, F.R. Slower implicit categorical learning in adult poor readers. Ann. Dyslexia 54, 281–303 (2004).

    Article  Google Scholar 

  44. Ben-Yehudah, G., Sackett, E., Malchi-Ginzberg, L. & Ahissar, M. Impaired temporal contrast sensitivity in dyslexics is specific to retain-and-compare paradigms. Brain, 124, 1381–1395 (2001).

    Article  CAS  Google Scholar 

  45. Ben-Yehudah, G. & Ahissar, M. Sequential spatial frequency discrimination is consistently impaired among adult dyslexics. Vision Res. 44, 1047–1063 (2004).

    Article  Google Scholar 

  46. Ulanovsky, N., Las, L. & Nelken, I. Processing of low-probability sounds by cortical neurons. Nat. Neurosci. 6, 391–398 (2003).

    Article  CAS  Google Scholar 

  47. Ulanovsky, N., Las, L., Farkas, D. & Nelken, I. Multiple time scales of adaptation in auditory cortex neurons. J. Neurosci. 24, 10440–10453 (2004).

    Article  CAS  Google Scholar 

  48. Lyon, G.R. Toward a definition of dyslexia. Ann. Dyslexia 45, 3–27 (1995).

    Article  Google Scholar 

  49. Putter-Katz, H., Banai, K. & Ahissar, M. Speech perception in noise among learning disabled teenagers. in Symposium on Plasticity of the Central Auditory System and Processing of Complex Acoustic Signals (eds. Syka, J. & Merzenich, M.M.) 251–257 (Springer, New York, 2005).

    Google Scholar 

  50. Dreschler, W.A., Verschuure, H., Ludvigsen, C. & Westermann, S. ICRA noises: artificial noise signals with speech-like spectral and temporal properties for hearing instrument assessment. International Collegium for Rehabilitative Audiology. Audiology 40, 148–157 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Nahum, M. Shovman, A. Rokem and S. Greenberg for their help at various stages of this project. We thank S. Hochstein and E. Ahissar for comments on the manuscript. This study was supported by the Israel Science Foundation–Center of Excellence Grant, the Volkswagen Foundation and the Israeli Institute for Psychobiology.

Author information

Authors and Affiliations

Authors

Contributions

M.A. supervised the project and wrote the manuscript; Y.L. conducted Study II, statistical analyses and proofreading; H.P.-K. co-administered Study I and designed the nonadaptive speech perception test and K.B. designed, administered and analyzed the frequency discrimination tests.

Corresponding author

Correspondence to Merav Ahissar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahissar, M., Lubin, Y., Putter-Katz, H. et al. Dyslexia and the failure to form a perceptual anchor. Nat Neurosci 9, 1558–1564 (2006). https://doi.org/10.1038/nn1800

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1800

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing