Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LIP responses to a popout stimulus are reduced if it is overtly ignored

Abstract

Bright objects capture our attention by virtue of 'popping out' from their surroundings. This correlates with strong responses in cortical areas thought to be important in attentional allocation. Previous studies have suggested that with the right mindset or training, humans can ignore popout stimuli. We studied the activity of neurons in monkey lateral intraparietal area while monkeys performed a visual search task. The monkeys were free to move their eyes, and a distractor, but never the search target, popped out. On trials in which the monkeys made a saccade directly to the search target, the popout distractor evoked a smaller response than the non-popout distractors. The intensity of the response to the popout correlated inversely with the monkeys' ability to ignore it. We suggest that this modulation corresponds to a top-down mechanism that the brain uses to adjust the parietal representation of salience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioral task.
Figure 2: Percentage of first saccades to the popout distractor before and during recording.
Figure 3: Responses to the target or distractors within the neuron's receptive field.
Figure 4: Response to popout and non-popout distractors in three epochs of the trial for each monkey.
Figure 5: Cell-by-cell correlation of response suppression with saccade suppression.

Similar content being viewed by others

References

  1. Cave, K.R. & Wolfe, J.M. Modeling the role of parallel processing in visual search. Cognit. Psychol. 22, 225–271 (1990).

    Article  CAS  Google Scholar 

  2. Duncan, J. & Humphreys, G.W. Visual search and stimulus similarity. Psychol. Rev. 96, 433–458 (1989).

    Article  CAS  Google Scholar 

  3. Treisman, A.M. & Gelade, G. A feature-integration theory of attention. Cognit. Psychol. 12, 97–136 (1980).

    Article  CAS  Google Scholar 

  4. Joseph, J.S. & Optican, L.M. Involuntary attentional shifts due to orientation differences. Percept. Psychophys. 58, 651–665 (1996).

    Article  CAS  Google Scholar 

  5. Irwin, D.E., Colcombe, A.M., Kramer, A.F. & Hahn, S. Attentional and oculomotor capture by onset, luminance and color singletons. Vision Res. 40, 1443–1458 (2000).

    Article  CAS  Google Scholar 

  6. Theeuwes, J. Cross-dimensional perceptual selectivity. Percept. Psychophys. 50, 184–193 (1991).

    Article  CAS  Google Scholar 

  7. Yantis, S. & Hillstrom, A.P. Stimulus-driven attentional capture: evidence from equiluminant visual objects. J. Exp. Psychol. Hum. Percept. Perform. 20, 95–107 (1994).

    Article  CAS  Google Scholar 

  8. Theeuwes, J. & Burger, R. Attentional control during visual search: the effect of irrelevant singletons. J. Exp. Psychol. Hum. Percept. Perform. 24, 1342–1353 (1998).

    Article  CAS  Google Scholar 

  9. Theeuwes, J. Stimulus-driven capture and attentional set: selective search for color and visual abrupt onsets. J. Exp. Psychol. Hum. Percept. Perform. 20, 799–806 (1994).

    Article  CAS  Google Scholar 

  10. Maljkovic, V. & Nakayama, K. Priming of pop-out: I. Role of features. Mem. Cognit. 22, 657–672 (1994).

    Article  CAS  Google Scholar 

  11. Kim, M.S. & Cave, K.R. Top-down and bottom-up attentional control: on the nature of interference from a salient distractor. Percept. Psychophys. 61, 1009–1023 (1999).

    Article  CAS  Google Scholar 

  12. Theeuwes, J., De Vries, G.J. & Godijn, R. Attentional and oculomotor capture with static singletons. Percept. Psychophys. 65, 735–746 (2003).

    Article  Google Scholar 

  13. Bacon, W.F. & Egeth, H.E. Overriding stimulus-driven attentional capture. Percept. Psychophys. 55, 485–496 (1994).

    Article  CAS  Google Scholar 

  14. Yantis, S. & Egeth, H.E. On the distinction between visual salience and stimulus-driven attentional capture. J. Exp. Psychol. Hum. Percept. Perform. 25, 661–676 (1999).

    Article  CAS  Google Scholar 

  15. Godijn, R. & Theeuwes, J. Programming of endogenous and exogenous saccades: evidence for a competitive integration model. J. Exp. Psychol. Hum. Percept. Perform. 28, 1039–1054 (2002).

    Article  Google Scholar 

  16. Lamy, D., Tsal, Y. & Egeth, H.E. Does a salient distractor capture attention early in processing? Psychon. Bull. Rev. 10, 621–629 (2003).

    Article  Google Scholar 

  17. Lamy, D., Leber, A. & Egeth, H.E. Effects of task relevance and stimulus-driven salience in feature-search mode. J. Exp. Psychol. Hum. Percept. Perform. 30, 1019–1031 (2004).

    Article  Google Scholar 

  18. Folk, C.L., Remington, R.W. & Johnston, J.C. Involuntary covert orienting is contingent on attentional control settings. J. Exp. Psychol. Hum. Percept. Perform. 18, 1030–1044 (1992).

    Article  CAS  Google Scholar 

  19. Rauschenberger, R. Attentional capture by auto- and allo-cues. Psychon. Bull. Rev. 10, 814–842 (2003).

    Article  Google Scholar 

  20. Koch, C. & Ullman, S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4, 219–227 (1985).

    CAS  PubMed  Google Scholar 

  21. Itti, L. & Koch, C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res. 40, 1489–1506 (2000).

    Article  CAS  Google Scholar 

  22. Bisley, J.W. & Goldberg, M.E. Neuronal activity in the lateral intraparietal area and spatial attention. Science 299, 81–86 (2003).

    Article  CAS  Google Scholar 

  23. Bisley, J.W. & Goldberg, M.E. Neural correlates of attention and distractibility in the lateral intraparietal area. J. Neurophysiol. 95, 1696–1717 (2006).

    Article  Google Scholar 

  24. Thompson, K.G. & Bichot, N.P. A visual salience map in the primate frontal eye field. Prog. Brain Res. 147, 251–262 (2005).

    PubMed  Google Scholar 

  25. Steinmetz, M.A. & Constantinidis, C. Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. Cereb. Cortex 5, 448–456 (1995).

    Article  CAS  Google Scholar 

  26. Constantinidis, C. & Steinmetz, M.A. Neuronal responses in area 7a to multiple-stimulus displays: I. Neurons encode the location of the salient stimulus. Cereb. Cortex 11, 581–591 (2001).

    Article  CAS  Google Scholar 

  27. Constantinidis, C. & Steinmetz, M.A. Posterior parietal cortex automatically encodes the location of salient stimuli. J. Neurosci. 25, 233–238 (2005).

    Article  CAS  Google Scholar 

  28. Kusunoki, M., Gottlieb, J. & Goldberg, M.E. The lateral intraparietal area as a salience map: the representation of abrupt onset, stimulus motion, and task relevance. Vision Res. 40, 1459–1468 (2000).

    Article  CAS  Google Scholar 

  29. Gottlieb, J.P., Kusunoki, M. & Goldberg, M.E. The representation of visual salience in monkey parietal cortex. Nature 391, 481–484 (1998).

    Article  CAS  Google Scholar 

  30. McPeek, R.M. & Keller, E.L. Saccade target selection in the superior colliculus during a visual search task. J. Neurophysiol. 88, 2019–2034 (2002).

    Article  Google Scholar 

  31. Thompson, K.G., Hanes, D.P., Bichot, N.P. & Schall, J.D. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J. Neurophysiol. 76, 4040–4055 (1996).

    Article  CAS  Google Scholar 

  32. Thompson, K.G., Bichot, N.P. & Schall, J.D. Dissociation of visual discrimination from saccade programming in macaque frontal eye field. J. Neurophysiol. 77, 1046–1050 (1997).

    Article  CAS  Google Scholar 

  33. Bichot, N.P., Rao, S.C. & Schall, J.D. Continuous processing in macaque frontal cortex during visual search. Neuropsychologia 39, 972–982 (2001).

    Article  CAS  Google Scholar 

  34. Ipata, A.E., Gee, A.L., Goldberg, M.E. & Bisley, J.W. Activity in the lateral intraparietal area predicts the goal and latency of saccades in a free viewing visual search task. J. Neurosci. 26, 3656–3661 (2006).

    Article  CAS  Google Scholar 

  35. Hikosaka, O. & Wurtz, R.H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. J. Neurophysiol. 49, 1268–1284 (1983).

    Article  CAS  Google Scholar 

  36. Bisley, J.W., Krishna, B.S. & Goldberg, M.E. A rapid and precise on-response in posterior parietal cortex. J. Neurosci. 24, 1833–1838 (2004).

    Article  CAS  Google Scholar 

  37. Li, W., Piech, V. & Gilbert, C.D. Perceptual learning and top-down influences in primary visual cortex. Nat. Neurosci. 7, 651–657 (2004).

    Article  CAS  Google Scholar 

  38. Toth, L.J. & Assad, J.A. Dynamic coding of behaviourally relevant stimuli in parietal cortex. Nature 415, 165–168 (2002).

    Article  CAS  Google Scholar 

  39. Yang, T. & Maunsell, J.H. The effect of perceptual learning on neuronal responses in monkey visual area V4. J. Neurosci. 24, 1617–1626 (2004).

    Article  Google Scholar 

  40. Wolfe, J.M. Guided search 2.0. A revised model of visual search. Psychon. Bull. Rev. 1, 202–238 (1994).

    Article  CAS  Google Scholar 

  41. Colby, C.L. & Goldberg, M.E. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319–349 (1999).

    Article  CAS  Google Scholar 

  42. Bichot, N.P., Schall, J.D. & Thompson, K.G. Visual feature selectivity in frontal eye fields induced by experience in mature macaques. Nature 381, 697–699 (1996).

    Article  CAS  Google Scholar 

  43. Powell, K.D. & Goldberg, M.E. Response of neurons in the lateral intraparietal area to a distractor flashed during the delay period of a memory-guided saccade. J. Neurophysiol. 84, 301–310 (2000).

    Article  CAS  Google Scholar 

  44. Theeuwes, J., Kramer, A.F. & Kingstone, A. Attentional capture modulates perceptual sensitivity. Psychon. Bull. Rev. 11, 551–554 (2004).

    Article  Google Scholar 

  45. Judge, S.J., Richmond, B.J. & Chu, F.C. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res. 20, 535–538 (1980).

    Article  CAS  Google Scholar 

  46. Richmond, B.J., Optican, L.M., Podell, M. & Spitzer, H. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. J. Neurophysiol. 57, 132–146 (1987).

    Article  CAS  Google Scholar 

  47. Wilson, D.R. & Martinez, T.R. Improved heterogenous distance functions. J. Artif. Intell. Res. 6, 1–34 (1997).

    Article  Google Scholar 

  48. Pouget, P., Emeric, E.E., Stuphorn, V., Reis, K. & Schall, J.D. Chronometry of visual responses in frontal eye field, supplementary eye field, and anterior cingulate cortex. J. Neurophysiol. 94, 2086–2092 (2005).

    Article  Google Scholar 

  49. Maunsell, J.H. & Gibson, J.R. Visual response latencies in striate cortex of the macaque monkey. J. Neurophysiol. 68, 1332–1344 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Osman and G. Asfaw for veterinary care, Y. Pavlova for expert assistance with animal care, G. Duncan for electronic and systems work and L. Palmer for her indispensable help. Preliminary experiments were performed at the Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland. The research was supported by grants to M.E.G. from the National Eye Institute (R01 EY014978-01 and R24 EY015634-01), the Whitehall, James S. MacDonnell and W.M. Keck Foundations, and the David Mahoney Chair at Columbia University; and to A.L.G. from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.E.I. and A.L.G. performed the experiments, analyzed the data, prepared the figures and contributed to the manuscript preparation. J.G. first suggested studying the response to a task-irrelevant popout in a search task. J.W.B. and M.E.G. supervised the experiments, the analysis of the data and the preparation of the manuscript.

Corresponding author

Correspondence to Anna E Ipata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ipata, A., Gee, A., Gottlieb, J. et al. LIP responses to a popout stimulus are reduced if it is overtly ignored. Nat Neurosci 9, 1071–1076 (2006). https://doi.org/10.1038/nn1734

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1734

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing