Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

End stopping in V1 is sensitive to contrast

Abstract

Common situations that result in different perceptions of grouping and border ownership, such as shadows and occlusion, have distinct sign-of-contrast relationships at their edge-crossing junctions. Here we report a property of end stopping in V1 that distinguishes among different sign-of-contrast situations, thereby obviating the need for explicit junction detectors. We show that the inhibitory effect of the end zones in end-stopped cells is highly selective for the relative sign of contrast between the central activating stimulus and stimuli presented at the end zones. Conversely, the facilitatory effect of end zones in length-summing cells is not selective for the relative sign of contrast between the central activating stimulus and stimuli presented at the end zones. This finding indicates that end stopping belongs in the category of cortical computations that are selective for sign of contrast, such as direction selectivity and disparity selectivity, but length summation does not.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sign of contrast along contour discontinuities drives border ownership and surface stratification.
Figure 2: Sign-of-contrast selectivity of end stopping and length summation.
Figure 3: Population results for the end-zone properties of end-stopped and length-summing cells.
Figure 4: Stimulus configuration for sparse-noise reverse-correlation mapping of end-stopped and length-summing effects.
Figure 5: Paired-bar interaction maps for three end-stopped cells.
Figure 6: Paired-bar interaction maps for three length-summing cells.
Figure 7: Time courses of first-order responses and second-order interactions in the end zones and the side bands.

Similar content being viewed by others

References

  1. Adelson, E.H. Lightness perception and lightness illusions. in The New Cognitive Neurosciences (ed. M. Gazzaniga) 339–351 (MIT Press, Cambridge, MA, 2000).

    Google Scholar 

  2. Attneave, F. Some informational aspects of visual perception. Psychol. Rev. 61, 183–193 (1954).

    Article  CAS  Google Scholar 

  3. Beck, J., Prazdny, K. & Ivry, R. The perception of transparency with achromatic colors. Percept. Psychophys. 35, 407–422 (1984).

    Article  CAS  Google Scholar 

  4. Watanabe, T. & Cavanagh, P. The role of transparency in perceptual grouping and pattern recognition. Perception 21, 133–139 (1992).

    Article  CAS  Google Scholar 

  5. Watanabe, T. & Cavanagh, P. Transparent surfaces defined by implicit X junctions. Vision Res. 33, 2339–2346 (1993).

    Article  CAS  Google Scholar 

  6. Watanabe, T. & Cavanagh, P. Surface decomposition accompanying the perception of transparency. Spat. Vis. 7, 95–111 (1993).

    Article  CAS  Google Scholar 

  7. Grossberg, S. & Yazdanbakhsh, A. Laminar cortical dynamics of 3D surface perception: stratification, transparency, and neon color spreading. Vision Res. 45, 1725–1743 (2005).

    Article  Google Scholar 

  8. Howe, P.D. & Livingstone, M.S. V1 partially solves the stereo aperture problem. Cereb. Cortex, published online 23 November 2005 (doi:10.1093/cercor/bhj077).

  9. Pack, C.C., Born, R.T. & Livingstone, M.S. Two-dimensional substructure of stereo and motion interactions in macaque visual cortex. Neuron 37, 525–535 (2003).

    Article  CAS  Google Scholar 

  10. Pack, C.C. et al. End-stopping and the aperture problem: two-dimensional motion signals in macaque V1. Neuron 39, 671–680 (2003).

    Article  CAS  Google Scholar 

  11. Hubel, D.H. & Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  12. Hammond, P. & Munden, I.M. Areal influences on complex cells in cat striate cortex: stimulus-specificity of width and length summation. Exp. Brain Res. 80, 135–147 (1990).

    Article  CAS  Google Scholar 

  13. Gilbert, C.D. Laminar differences in receptive field properties of cells in cat primary visual cortex. J. Physiol. (Lond.) 268, 391–421 (1977).

    Article  CAS  Google Scholar 

  14. Grieve, K.L. & Sillito, A.M. The length summation properties of layer VI cells in the visual cortex and hypercomplex cell end zone inhibition. Exp. Brain Res. 84, 319–325 (1991).

    Article  CAS  Google Scholar 

  15. Ohzawa, I. & Freeman, R.D. The binocular organization of complex cells in the cat's visual cortex. J. Neurophysiol. 56, 243–259 (1986).

    Article  CAS  Google Scholar 

  16. Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. Receptive field organization of complex cells in the cat's striate cortex. J. Physiol. (Lond.) 283, 79–99 (1978).

    Article  CAS  Google Scholar 

  17. Livingstone, M. & Conway, B.R. Substructure of direction-selective receptive fields in macaque V1. J. Neurophysiol. 89, 2743–2759 (2003).

    Article  Google Scholar 

  18. Szulborski, R.G. & Palmer, L.A. The two-dimensional spatial structure of nonlinear subunits in the receptive fields of complex cells. Vision Res. 30, 249–254 (1990).

    Article  CAS  Google Scholar 

  19. Hubel, D.H. & Wiesel, T.N. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965).

    Article  CAS  Google Scholar 

  20. Schiller, P.H., Finlay, B.L. & Volman, S.F. Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. J. Neurophysiol. 39, 1288–1319 (1976).

    Article  CAS  Google Scholar 

  21. Bolz, J. & Gilbert, C.D. Generation of end-inhibition in the visual cortex via interlaminar connections. Nature 320, 362–365 (1986).

    Article  CAS  Google Scholar 

  22. Dobbins, A., Zucker, S.W. & Cynader, M.S. Endstopped neurons in the visual cortex as a substrate for calculating curvature. Nature 329, 438–441 (1987).

    Article  CAS  Google Scholar 

  23. Dobbins, A., Zucker, S.W. & Cynader, M.S. Endstopping and curvature. Vision Res. 29, 1371–1387 (1989).

    Article  CAS  Google Scholar 

  24. DeAngelis, G.C., Freeman, R.D. & Ohzawa, I. Length and width tuning of neurons in the cat's primary visual cortex. J. Neurophysiol. 71, 347–374 (1994).

    Article  CAS  Google Scholar 

  25. Cleland, B.G., Lee, B.B. & Vidyasagar, T.R. Response of neurons in the cat's lateral geniculate nucleus to moving bars of different length. J. Neurosci. 3, 108–116 (1983).

    Article  CAS  Google Scholar 

  26. Rose, D. Mechanisms underlying the receptive field properties of neurons in cat visual cortex. Vision Res. 19, 533–544 (1979).

    Article  CAS  Google Scholar 

  27. Sillito, A.M. & Versiani, V. The contribution of excitatory and inhibitory inputs to the length preference of hypercomplex cells in layers II and III of the cat's striate cortex. J. Physiol. (Lond.) 273, 775–790 (1977).

    Article  CAS  Google Scholar 

  28. Anderson, J.S. et al. Membrane potential and conductance changes underlying length tuning of cells in cat primary visual cortex. J. Neurosci. 21, 2104–2112 (2001).

    Article  CAS  Google Scholar 

  29. Heeger, D.J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992).

    Article  CAS  Google Scholar 

  30. Nelson, J.I. & Frost, B.J. Orientation-selective inhibition from beyond the classic visual receptive field. Brain Res. 139, 359–365 (1978).

    Article  CAS  Google Scholar 

  31. DeAngelis, G.C. et al. Organization of suppression in receptive fields of neurons in cat visual cortex. J. Neurophysiol. 68, 144–163 (1992).

    Article  CAS  Google Scholar 

  32. Sillito, A.M., Cudeiro, J. & Murphy, P.C. Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus. Exp. Brain Res. 93, 6–16 (1993).

    Article  CAS  Google Scholar 

  33. Murphy, P.C. & Sillito, A.M. Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature 329, 727–729 (1987).

    Article  CAS  Google Scholar 

  34. Orban, G.A., Kato, H. & Bishop, P.O. Dimensions and properties of end-zone inhibitory areas in receptive fields of hypercomplex cells in cat striate cortex. J. Neurophysiol. 42, 833–849 (1979).

    Article  CAS  Google Scholar 

  35. Cavanaugh, J.R., Bair, W. & Movshon, J.A. Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. J. Neurophysiol. 88, 2547–2556 (2002).

    Article  Google Scholar 

  36. Tanaka, K. et al. Receptive field properties of cells in area 19 of the cat. Exp. Brain Res. 65, 549–558 (1987).

    CAS  PubMed  Google Scholar 

  37. Nakayama, K., He, Z. & Shimojo, S. Visual surface representation: a critical link between lower-level and higher-level vision. in Visual Cognition: An Invitation to Cognitive Science (eds. S.M. Kosslyn & D. Osherson) 1–70 (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  38. He, Z.J. & Nakayama, K. Surfaces versus features in visual search. Nature 359, 231–233 (1992).

    Article  CAS  Google Scholar 

  39. Rensink, R.A. & Enns, J.T. Early completion of occluded objects. Vision Res. 38, 2489–2505 (1998).

    Article  CAS  Google Scholar 

  40. Nakayama, K., Shimojo, S. & Silverman, G.H. Stereoscopic depth: its relation to image segmentation, grouping, and the recognition of occluded objects. Perception 18, 55–68 (1989).

    Article  CAS  Google Scholar 

  41. Driver, J. & Baylis, G.C. Edge-assignment and figure-ground segmentation in short-term visual matching. Cognit. Psychol. 31, 248–306 (1996).

    Article  CAS  Google Scholar 

  42. Zhou, H., Friedman, H.S. & von der Heydt, R. Coding of border ownership in monkey visual cortex. J. Neurosci. 20, 6594–6611 (2000).

    Article  CAS  Google Scholar 

  43. Born, R.T. et al. Segregation of object and background motion in visual area MT: effects of microstimulation on eye movements. Neuron 26, 725–734 (2000).

    Article  CAS  Google Scholar 

  44. Livingstone, M.S. Mechanisms of direction selectivity in macaque V1. Neuron 20, 509–526 (1998).

    Article  CAS  Google Scholar 

  45. Judge, S.J., Richmond, B.J. & Chu, F.C. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res. 20, 535–538 (1980).

    Article  CAS  Google Scholar 

  46. Livingstone, M.S., Pack, C.C. & Born, R.T. Two-dimensional substructure of MT receptive fields. Neuron 30, 781–793 (2001).

    Article  CAS  Google Scholar 

  47. Emerson, R.C. et al. Nonlinear directionally selective subunits in complex cells of cat striate cortex. J. Neurophysiol. 58, 33–65 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Freeman for developing computer programs; T. Chuprina for technical assistance; R. Rajimehr for helpful input; C. Libedinsky for discussion; and D. Tsao for an analysis framework. This work was supported by a grant from the National Eye Institute (EY13135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Yazdanbakhsh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yazdanbakhsh, A., Livingstone, M. End stopping in V1 is sensitive to contrast. Nat Neurosci 9, 697–702 (2006). https://doi.org/10.1038/nn1693

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1693

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing