Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex

Abstract

Two key models for examining activity-dependent development of primary visual cortex (V1) involve either reduction of activity in both eyes via dark-rearing (DR) or imbalance of activity between the two eyes via monocular deprivation (MD). Combining DNA microarray analysis with computational approaches, RT-PCR, immunohistochemistry and physiological imaging, we find that DR leads to (i) upregulation of genes subserving synaptic transmission and electrical activity, consistent with a coordinated response of cortical neurons to reduction of visual drive, and (ii) downregulation of parvalbumin expression, implicating parvalbumin-expressing interneurons as underlying the delay in cortical maturation after DR. MD partially activates homeostatic mechanisms but differentially upregulates molecular pathways related to growth factors and neuronal degeneration, consistent with reorganization of connections after MD. Expression of a binding protein of insulin-like growth factor-1 (IGF1) is highly upregulated after MD, and exogenous application of IGF1 prevents the physiological effects of MD on ocular dominance plasticity examined in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis and characterization of genes activated by different protocols of visual input deprivation.
Figure 2: Regulation of genes involved in excitatory and inhibitory transmission after MD and DR.
Figure 3: Confirmation of selected genes with RT-PCR.
Figure 4: Gene set enrichment analysis of gene expression after DR and MD.
Figure 5: Protein expression analyses of selected molecules after DR and MD.
Figure 6: Application of IGF1 prevents the ocular dominance shift after MD in mouse V1.
Figure 7: Immunohistochemistry studies for selected markers of the IGF1 pathway.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Sur, M. & Rubenstein, J.L. Patterning and plasticity of the cerebral cortex. Science 310, 805–810 (2005).

    Article  CAS  Google Scholar 

  2. Berardi, N., Pizzorusso, T., Ratto, G.M. & Maffei, L. Molecular basis of plasticity in the visual cortex. Trends Neurosci. 26, 369–378 (2003).

    Article  CAS  Google Scholar 

  3. Desai, N.S., Cudmore, R.H., Nelson, S.B. & Turrigiano, G.G. Critical periods for experience-dependent synaptic scaling in visual cortex. Nat. Neurosci. 5, 783–789 (2002).

    Article  CAS  Google Scholar 

  4. Wallace, W. & Bear, M.F. A morphological correlate of synaptic scaling in visual cortex. J. Neurosci. 24, 6928–6938 (2004).

    Article  CAS  Google Scholar 

  5. Kirkwood, A., Rioult, M.C. & Bear, M.F. Experience-dependent modification of synaptic plasticity in visual cortex. Nature 381, 526–528 (1996).

    Article  CAS  Google Scholar 

  6. Fagiolini, M., Pizzorusso, T., Berardi, N., Domenici, L. & Maffei, L. Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res. 34, 709–720 (1994).

    Article  CAS  Google Scholar 

  7. Morales, B., Choi, S.Y. & Kirkwood, A. Dark rearing alters the development of GABAergic transmission in visual cortex. J. Neurosci. 22, 8084–8090 (2002).

    Article  CAS  Google Scholar 

  8. Turrigiano, G.G. & Nelson, S.B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107 (2004).

    Article  CAS  Google Scholar 

  9. Wiesel, T.N. & Hubel, D.H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963).

    Article  CAS  Google Scholar 

  10. Trachtenberg, J.T., Trepel, C. & Stryker, M.P. Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex. Science 287, 2029–2032 (2000).

    Article  CAS  Google Scholar 

  11. Oray, S., Majewska, A. & Sur, M. Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation. Neuron 44, 1021–1030 (2004).

    Article  CAS  Google Scholar 

  12. Antonini, A. & Stryker, M.P. Rapid remodeling of axonal arbors in the visual cortex. Science 260, 1819–1821 (1993).

    Article  CAS  Google Scholar 

  13. Shatz, C.J. & Stryker, M.P. Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. J. Physiol. (Lond.) 281, 267–283 (1978).

    Article  CAS  Google Scholar 

  14. Crowley, J.C. & Katz, L.C. Early development of ocular dominance columns. Science 290, 1321–1324 (2000).

    Article  CAS  Google Scholar 

  15. Prasad, S.S. et al. Gene expression patterns during enhanced periods of visual cortex plasticity. Neuroscience 111, 35–45 (2002).

    Article  CAS  Google Scholar 

  16. Ossipow, V., Pellissier, F., Schaad, O. & Ballivet, M. Gene expression analysis of the critical period in the visual cortex. Mol. Cell. Neurosci. 27, 70–83 (2004).

    Article  CAS  Google Scholar 

  17. Gordon, J.A. & Stryker, M.P. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci. 16, 3274–3286 (1996).

    Article  CAS  Google Scholar 

  18. Majewska, A. & Sur, M. Motility of dendritic spines in visual cortex in vivo: changes during the critical period and effects of visual deprivation. Proc. Natl. Acad. Sci. USA 100, 16024–16029 (2003).

    Article  CAS  Google Scholar 

  19. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807 (2004).

    Article  CAS  Google Scholar 

  20. Abdelhaleem, M. Do human RNA helicases have a role in cancer? Biochim. Biophys. Acta 1704, 37–46 (2004).

    CAS  PubMed  Google Scholar 

  21. Murray, K.D., Isackson, P.J. & Jones, E.G. N-methyl-D-aspartate receptor dependent transcriptional regulation of two calcium/calmodulin-dependent protein kinase type II isoforms in rodent cerebral cortex. Neuroscience 122, 407–420 (2003).

    Article  CAS  Google Scholar 

  22. Steele-Perkins, G. et al. The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol. Cell. Biol. 25, 685–698 (2005).

    Article  CAS  Google Scholar 

  23. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

  24. Neve, R.L. & Bear, M.F. Visual experience regulates gene expression in the developing striate cortex. Proc. Natl. Acad. Sci. USA 86, 4781–4784 (1989).

    Article  CAS  Google Scholar 

  25. Xue, J., Li, G., Laabich, A. & Cooper, N.G. Visual-mediated regulation of retinal CaMKII and its GluR1 substrate is age-dependent. Brain Res. Mol. Brain Res. 93, 95–104 (2001).

    Article  CAS  Google Scholar 

  26. Pham, T.A., Impey, S., Storm, D.R. & Stryker, M.P. CRE-mediated gene transcription in neocortical neuronal plasticity during the developmental critical period. Neuron 22, 63–72 (1999).

    Article  CAS  Google Scholar 

  27. Justicia, C., Gabriel, C. & Planas, A.M. Activation of the JAK/STAT pathway following transient focal cerebral ischemia: signaling through Jak1 and Stat3 in astrocytes. Glia 30, 253–270 (2000).

    Article  CAS  Google Scholar 

  28. Iwadate, H., Sugisaki, T., Kudo, M. & Kizuki, K. Actions of insulin-like growth factor binding protein-5 (IGFBP-5) are potentially regulated by tissue kallikrein in rat brains. Life Sci. 73, 3149–3158 (2003).

    Article  CAS  Google Scholar 

  29. Bondy, C.A. & Cheng, C.M. Signaling by insulin-like growth factor 1 in brain. Eur. J. Pharmacol. 490, 25–31 (2004).

    Article  CAS  Google Scholar 

  30. Zheng, W.H. & Quirion, R. Comparative signaling pathways of insulin-like growth factor-1 and brain-derived neurotrophic factor in hippocampal neurons and the role of the PI3 kinase pathway in cell survival. J. Neurochem. 89, 844–852 (2004).

    Article  CAS  Google Scholar 

  31. Obata, S., Obata, J., Das, A. & Gilbert, C.D. Molecular correlates of topographic reorganization in primary visual cortex following retinal lesions. Cereb. Cortex 9, 238–248 (1999).

    Article  CAS  Google Scholar 

  32. Maffei, L., Berardi, N., Domenici, L., Parisi, V. & Pizzorusso, T. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats. J. Neurosci. 12, 4651–4662 (1992).

    Article  CAS  Google Scholar 

  33. Guan, J., Bennet, L., Gluckman, P.D. & Gunn, A.J. Insulin-like growth factor-1 and post-ischemic brain injury. Prog. Neurobiol. 70, 443–462 (2003).

    Article  CAS  Google Scholar 

  34. Blair, L.A. & Marshall, J. IGF-1 modulates N and L calcium channels in a PI 3-kinase-dependent manner. Neuron 19, 421–429 (1997).

    Article  CAS  Google Scholar 

  35. Lodovichi, C., Berardi, N., Pizzorusso, T. & Maffei, L. Effects of neurotrophins on cortical plasticity: same or different? J. Neurosci. 20, 2155–2165 (2000).

    Article  CAS  Google Scholar 

  36. Bear, M.F., Kleinschmidt, A., Gu, Q.A. & Singer, W. Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist. J. Neurosci. 10, 909–925 (1990).

    Article  CAS  Google Scholar 

  37. Roberts, E.B., Meredith, M.A. & Ramoa, A.S. Suppression of NMDA receptor function using antisense DNA block ocular dominance plasticity while preserving visual responses. J. Neurophysiol. 80, 1021–1032 (1998).

    Article  CAS  Google Scholar 

  38. Hensch, T.K. et al. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504–1508 (1998).

    Article  CAS  Google Scholar 

  39. Pizzorusso, T. et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248–1251 (2002).

    Article  CAS  Google Scholar 

  40. Mataga, N., Nagai, N. & Hensch, T.K. Permissive proteolytic activity for visual cortical plasticity. Proc. Natl. Acad. Sci. USA 99, 7717–7721 (2002).

    Article  CAS  Google Scholar 

  41. Fagiolini, M. et al. Specific GABAA circuits for visual cortical plasticity. Science 303, 1681–1683 (2004).

    Article  CAS  Google Scholar 

  42. Huang, Z.J. et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739–755 (1999).

    Article  CAS  Google Scholar 

  43. White, L.E., Coppola, D.M. & Fitzpatrick, D. The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex. Nature 411, 1049–1052 (2001).

    Article  CAS  Google Scholar 

  44. Corriveau, R.A., Huh, G.S. & Shatz, C.J. Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21, 505–520 (1998).

    Article  CAS  Google Scholar 

  45. Xu, W., Nair, J.S., Malhotra, A. & Zhang, J.J. B cell antigen receptor signaling enhances IFN-γ-induced Stat1 target gene expression through calcium mobilization and activation of multiple serine kinase pathways. J. Interferon Cytokine Res. 25, 113–124 (2005).

    Article  CAS  Google Scholar 

  46. Di Cristo, G. et al. Requirement of ERK activation for visual cortical plasticity. Science 292, 2337–2340 (2001).

    Article  CAS  Google Scholar 

  47. Tonner, E. et al. Insulin-like growth factor binding protein-5 (IGFBP-5) potentially regulates programmed cell death and plasminogen activation in the mammary gland. Adv. Exp. Med. Biol. 480, 45–53 (2000).

    Article  CAS  Google Scholar 

  48. McGee, A.W., Yang, Y., Fischer, Q.S., Daw, N.W. & Strittmatter, S.M. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 309, 2222–2226 (2005).

    Article  CAS  Google Scholar 

  49. Bondy, C.A. & Cheng, C.M. Insulin-like growth factor-1 promotes neuronal glucose utilization during brain development and repair processes. Int. Rev. Neurobiol. 51, 189–217 (2002).

    Article  CAS  Google Scholar 

  50. Tropea, D., Caleo, M. & Maffei, L. Synergistic effects of brain-derived neurotrophic factor and chondroitinase ABC on retinal fiber sprouting after denervation of the superior colliculus in adult rats. J. Neurosci. 23, 7034–7044 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Sur lab for their assistance, comments and advice and the staff at the Massachusetts Institute of Technology BioMicro Center for processing the RNA samples and for advice on data analysis. Supported by a National Research Service Award fellowship from the US National Institutes of Health (D.T.), a McGovern Fellowship (G.K.) and grants from the NIH and the Simons Foundation (M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mriganka Sur.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Graphic representation of the Microarray Expression Levels (MEL) for specific GABAergic and Glutamatergic receptors. (PDF 54 kb)

Supplementary Fig. 2

Immunostaining for several interneuron markers in three different conditions: control (Con), Monocular Deprivation (MD) and Dark Rearing (DR). (PDF 131 kb)

Supplementary Fig. 3

Comparison of gene expression in: (A) Short-term MD (4 days, P23-27) – expression in contralateral cortex versus control; (B) Short-term MD (4 days, P23-27) – expression in ipsilateral cortex versus control. (PDF 71 kb)

Supplementary Fig. 4

Double staining for IGFBP5 (green) and GAD67 (red) in visual cortex of a P28 mouse. (PDF 122 kb)

Supplementary Fig. 5

Comparison of gene expression in (A) Short-term MD+IGF1 versus control; (B) Short-term MD versus Short-term MD+IGF1. (PDF 29 kb)

Supplementary Table 1

Representation of the biological function categories at level 3 of the Gene Ontology (GO) database. (PDF 50 kb)

Supplementary Table 2

Representation of the number of genes significantly (P<0.01) up- and down- regulated across different conditions. (PDF 67 kb)

Supplementary Table 3

Representation of the top Gene Sets enriched in DR (left column) and MD (right column) versus control. (PDF 68 kb)

Supplementary Table 4

Representation of the top Gene Sets enriched in control versus the deprived conditions. (PDF 223 kb)

Supplementary Methods (DOC 59 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tropea, D., Kreiman, G., Lyckman, A. et al. Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex. Nat Neurosci 9, 660–668 (2006). https://doi.org/10.1038/nn1689

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1689

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing