Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression

Abstract

Electrical activity arising from motor innervation influences skeletal muscle physiology by controlling the expression of many muscle genes, including those encoding acetylcholine receptor (AChR) subunits. How electrical activity is converted into a transcriptional response remains largely unknown. We show that motor innervation controls chromatin acetylation in skeletal muscle and that histone deacetylase 9 (HDAC9) is a signal-responsive transcriptional repressor which is downregulated upon denervation, with consequent upregulation of chromatin acetylation and AChR expression. Forced expression of Hdac9 in denervated muscle prevents upregulation of activity-dependent genes and chromatin acetylation by linking myocyte enhancer factor 2 (MEF2) and class I HDACs. By contrast, Hdac9-null mice are supersensitive to denervation-induced changes in gene expression and show chromatin hyperacetylation and delayed perinatal downregulation of myogenin, an activator of AChR genes. These findings show a molecular mechanism to account for the control of chromatin acetylation by presynaptic neurons and the activity-dependent regulation of skeletal muscle genes by motor innervation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Innervation-dependent repression of muscle chromatin acetylation by MITR.
Figure 2: MITR interacts with HDAC1 and HDAC3 in skeletal muscle in vivo.
Figure 3: Acetylation and expression of myogenin and AChR genes in innervated and denervated muscle.
Figure 4: Suppression of the transcriptional response to denervation by MITR.
Figure 5: HDAC 4, HDAC5 and MITR localization in skeletal muscle.
Figure 6: Chromatin acetylation is increased in Hdac9−/− muscles.
Figure 7: Hdac9−/− mice are sensitized to denervation and have delayed myogenin repression after innervation.
Figure 8: MITR-mediated repression by innervation is caused by the inhibition of MEF2.

Similar content being viewed by others

References

  1. Guan, Z. et al. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 111, 483–493 (2002).

    Article  CAS  Google Scholar 

  2. Alarcon, J.M. et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42, 947–959 (2004).

    Article  CAS  Google Scholar 

  3. Korzus, E., Rosenfeld, M.G. & Mayford, M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42, 961–972 (2004).

    Article  CAS  Google Scholar 

  4. Sanes, J.R. & Lichtman, J.W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat. Rev. Neurosci. 2, 791–805 (2001).

    Article  CAS  Google Scholar 

  5. Schaeffer, L., Duclert, N., Huchet-Dymanus, M. & Changeux, J.P. Implication of a multisubunit Ets-related transcription factor in synaptic expression of the nicotinic acetylcholine receptor. EMBO J. 17, 3078–3090 (1998).

    Article  CAS  Google Scholar 

  6. Fromm, L. & Burden, S.J. Synapse-specific and neuregulin-induced transcription require an ets site that binds GABPα/GABPβ. Genes Dev. 12, 3074–3083 (1998).

    Article  CAS  Google Scholar 

  7. Schaeffer, L. de Kerchove d'Exaerde, A. & Changeux, J.P. Targeting transcription to the neuromuscular synapse. Neuron 31, 15–22 (2001).

    Article  CAS  Google Scholar 

  8. Gundersen, K., Rabben, I., Klocke, B.J. & Merlie, J.P. Overexpression of myogenin in muscles of transgenic mice: interaction with Id-1, negative crossregulation of myogenic factors, and induction of extrasynaptic acetylcholine receptor expression. Mol. Cell. Biol. 15, 7127–7134 (1995).

    Article  CAS  Google Scholar 

  9. Piette, J., Bessereau, J.L., Huchet, M. & Changeux, J.P. Two adjacent MyoD1-binding sites regulate expression of the acetylcholine receptor alpha-subunit gene. Nature 345, 353–355 (1990).

    Article  CAS  Google Scholar 

  10. Duclert, A., Piette, J. & Changeux, J.P. Influence of innervation of myogenic factors and acetylcholine receptor alpha-subunit mRNAs. Neuroreport 2, 25–28 (1991).

    Article  CAS  Google Scholar 

  11. Witzemann, V. & Sakmann, B. Differential regulation of MyoD and myogenin mRNA levels by nerve induced muscle activity. FEBS Lett. 282, 259–264 (1991).

    Article  CAS  Google Scholar 

  12. Eftimie, R., Brenner, H.R. & Buonanno, A. Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc. Natl. Acad. Sci. USA 88, 1349–1353 (1991).

    Article  CAS  Google Scholar 

  13. Merlie, J.P., Mudd, J., Cheng, T.C. & Olson, E.N. Myogenin and acetylcholine receptor alpha gene promoters mediate transcriptional regulation in response to motor innervation. J. Biol. Chem. 269, 2461–2467 (1994).

    CAS  PubMed  Google Scholar 

  14. Bessereau, J.L., Laudenbach, V., Le Poupon, C. & Changeux, J.P. Nonmyogenic factors bind nicotinic acetylcholine receptor promoter elements required for response to denervation. J. Biol. Chem. 273, 12786–12793 (1998).

    Article  CAS  Google Scholar 

  15. Sartorelli, V., Huang, J., Hamamori, Y. & Kedes, L. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol. 17, 1010–1026 (1997).

    Article  CAS  Google Scholar 

  16. Puri, P.L. et al. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol. Cell 1, 35–45 (1997).

    Article  CAS  Google Scholar 

  17. Polesskaya, A. et al. Interaction between acetylated MyoD and the bromodomain of CBP and/or p300. Mol. Cell. Biol. 21, 5312–5320 (2001).

    Article  CAS  Google Scholar 

  18. McKinsey, T.A., Zhang, C.L. & Olson, E.N. Control of muscle development by dueling HATs and HDACs. Curr. Opin. Genet. Dev. 11, 497–504 (2001).

    Article  CAS  Google Scholar 

  19. Lu, J., McKinsey, T.A., Zhang, C.L. & Olson, E.N. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol. Cell 6, 233–244 (2000).

    Article  CAS  Google Scholar 

  20. McKinsey, T.A., Zhang, C.L., Lu, J. & Olson, E.N. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106–111 (2000).

    Article  CAS  Google Scholar 

  21. McKinsey, T.A., Zhang, C.L. & Olson, E.N. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14–3-3 to histone deacetylase 5. Proc. Natl. Acad. Sci. USA 97, 14400–14405 (2000).

    Article  CAS  Google Scholar 

  22. Dressel, U. et al. A dynamic role for HDAC7 in MEF2-mediated muscle differentiation. J. Biol. Chem. 276, 17007–17013 (2001).

    Article  CAS  Google Scholar 

  23. McKinsey, T.A., Zhang, C.L. & Olson, E.N. Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol. Cell. Biol. 21, 6312–6321 (2001).

    Article  CAS  Google Scholar 

  24. Zhou, X., Richon, V.M., Rifkind, R.A. & Marks, P.A. Identification of a transcriptional repressor related to the noncatalytic domain of histone deacetylases 4 and 5. Proc. Natl. Acad. Sci. USA 97, 1056–1061 (2000).

    Article  CAS  Google Scholar 

  25. Zhou, X., Marks, P.A., Rifkind, R.A. & Richon, V.M. Cloning and characterization of a histone deacetylase, HDAC9. Proc. Natl. Acad. Sci. USA 98, 10572–10577 (2001).

    Article  CAS  Google Scholar 

  26. Sparrow, D.B. et al. MEF-2 function is modified by a novel co-repressor, MITR. EMBO J. 18, 5085–5098 (1999).

    Article  CAS  Google Scholar 

  27. Klarsfeld, A. et al. Regulation of muscle AChR alpha subunit gene expression by electrical activity: involvement of protein kinase C and Ca2+. Neuron 2, 1229–1236 (1989).

    Article  CAS  Google Scholar 

  28. Bessereau, J.L., Stratford-Perricaudet, L.D., Piette, J., Le Poupon, C. & Changeux, J.P. In vivo and in vitro analysis of electrical activity-dependent expression of muscle acetylcholine receptor genes using adenovirus. Proc. Natl. Acad. Sci. USA 91, 1304–1308 (1994).

    Article  CAS  Google Scholar 

  29. Walke, W., Xiao, G. & Goldman, D. Identification and characterization of a 47 base pair activity-dependent enhancer of the rat nicotinic acetylcholine receptor delta-subunit promoter. J. Neurosci. 16, 3641–3651 (1996).

    Article  CAS  Google Scholar 

  30. Lemercier, C. et al. mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J. Biol. Chem. 275, 15594–15599 (2000).

    Article  CAS  Google Scholar 

  31. Zhang, C.L., McKinsey, T.A. & Olson, E.N. The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis. Proc. Natl. Acad. Sci. USA 98, 7354–7359 (2001).

    Article  CAS  Google Scholar 

  32. Zhang, C.L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488 (2002).

    Article  CAS  Google Scholar 

  33. Zhang, C.L., McKinsey, T.A., Lu, J.R. & Olson, E.N. Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J. Biol. Chem. 276, 35–39 (2001).

    Article  CAS  Google Scholar 

  34. Cheng, T.C., Wallace, M.C., Merlie, J.P. & Olson, E.N. Separable regulatory elements governing myogenin transcription in mouse embryogenesis. Science 261, 215–218 (1993).

    Article  CAS  Google Scholar 

  35. Molkentin, J.D., Black, B.L., Martin, J.F. & Olson, E.N. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83, 1125–1136 (1995).

    Article  CAS  Google Scholar 

  36. Black, B.L. & Olson, E.N. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol. 14, 167–196 (1998).

    Article  CAS  Google Scholar 

  37. Wolff, J.A. et al. Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468 (1990).

    Article  CAS  Google Scholar 

  38. Ornatsky, O.I., Andreucci, J.J. & McDermott, J.C. A dominant-negative form of transcription factor MEF2 inhibits myogenesis. J. Biol. Chem. 272, 33271–33278 (1997).

    Article  CAS  Google Scholar 

  39. Naya, F.J., Wu, C., Richardson, J.A., Overbeek, P. & Olson, E.N. Transcriptional activity of MEF2 during mouse embryogenesis monitored with a MEF2-dependent transgene. Development 126, 2045–2052 (1999).

    CAS  PubMed  Google Scholar 

  40. Wu, H. et al. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J. 19, 1963–1973 (2000).

    Article  CAS  Google Scholar 

  41. Hyatt, J.P., Roy, R.R., Baldwin, K.M. & Edgerton, V.R. Nerve activity-independent regulation of skeletal muscle atrophy: role of MyoD and myogenin in satellite cells and myonuclei. Am. J. Physiol. Cell Physiol. 285, C1161–C1173 (2003).

    Article  CAS  Google Scholar 

  42. Tang, J., Jo, S.A. & Burden, S.J. Separate pathways for synapse-specific and electrical activity-dependent gene expression in skeletal muscle. Development 120, 1799–1804 (1994).

    CAS  PubMed  Google Scholar 

  43. Hediger, F. & Burden, S.J. Nuclear organization and silencing: putting things in their place. Nat. Cell Biol. 4, E53–E55 (2002).

    Article  CAS  Google Scholar 

  44. Fisher, A.G. & Merkenschlager, M. Gene silencing, cell fate and nuclear organization. Curr. Opin. Genet. Dev. 12, 193–197 (2002).

    Article  CAS  Google Scholar 

  45. Baxter, J., Merkenschlager, M. & Fisher, A.G. Nuclear organization and gene expression. Curr. Opin. Cell Biol. 14, 372–376 (2002).

    Article  CAS  Google Scholar 

  46. Lemercier, C. et al. Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor. J. Biol. Chem. 277, 22045–22052 (2002).

    Article  CAS  Google Scholar 

  47. Zhang, C.L., McKinsey, T.A. & Olson, E.N. Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol. Cell. Biol. 22, 7302–7312 (2002).

    Article  CAS  Google Scholar 

  48. Xu, Q. et al. p38 Mitogen-activated protein kinase-, calcium-calmodulin-dependent protein kinase-, and calcineurin-mediated signaling pathways transcriptionally regulate myogenin expression. Mol. Biol. Cell 13, 1940–1952 (2002).

    Article  CAS  Google Scholar 

  49. McKinsey, T.A., Zhang, C.L. & Olson, E.N. MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem. Sci. 27, 40–47 (2002).

    Article  CAS  Google Scholar 

  50. Chang, S. et al. Histone deacetylase 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol. Cell. Biol. 24, 8467–8476 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Chopin for technical assistance in chromatin immunoprecipitation (ChIP) assay; C. Antos for kind and helpful assistance; and A. Ravel-Chapuis, M. Vandromme, K. Ancelin, A. de Kerchove d'Exaerde, Y.-G. Gangloff and A. Sergeant for fruitful discussions and critical reading of the manuscript. This work was supported by the Association Française contre les Myopathies, the Centre National de la Recherche Scientifique, the Ministere de l'Education Nationale, de la Recherche et de la Technologie, and grants from the U.S. National Institutes of Health, the Texas Advanced Technology Program, The Robert A. Welch Foundation and the Donald W. Reynolds Foundation to E.N.O. and R.B.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Schaeffer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

HDAC 4, 5 and MITR localization in skeletal muscle. (PDF 215 kb)

Supplementary Fig. 2

Myogenin and AChR α subunit are expressed at the same levels in wild-type and Hdac9−/− mice. (PDF 101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Méjat, A., Ramond, F., Bassel-Duby, R. et al. Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression. Nat Neurosci 8, 313–321 (2005). https://doi.org/10.1038/nn1408

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1408

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing