Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Saccades actively maintain perceptual continuity

Abstract

People make saccades—rapid eye movements to a new fixation—approximately three times per second. This would seemingly disrupt perceptual continuity, yet our brains construct a coherent, stable view of the world from these successive fixations. There is conflicting evidence regarding the effects of saccades on perceptual continuity: some studies report that they are disruptive, with little information carryover between saccades; others report that carryover is substantial. Here we show that saccades actively contribute to perceptual continuity in humans in two different ways. When bistable stimuli are presented intermittently, saccades executed during the blank interval shorten the duration of states of ambiguous figures, indicating that saccades can erase immediately past perceptual states. On the other hand, they prolong the McCollough effect, indicating that saccades strengthen learned contingencies. Our results indicate that saccades help, rather than hinder, perceptual continuity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bistable stimuli used in experiment 1.
Figure 2: State durations for bistable stimuli.
Figure 3: Persistence of the McCollough effect.

Similar content being viewed by others

References

  1. Burr, D.C., Morrone, M.C. & Ross, J. Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature 371, 511–513 (1994).

    Article  CAS  Google Scholar 

  2. Matin, L. Visual perception of direction for stimuli flashed during voluntary saccadic eye movements Science 148, 1485–1487 (1965).

    Article  CAS  Google Scholar 

  3. Schlag, J. & Schlag-Rey, M. Illusory localization of stimuli flashed in the dark before saccades. Vision Res. 35, 709–716 (1995).

    Article  Google Scholar 

  4. Ross, J., Morrone, M.C. & Burr, D.C. Compression of visual space before saccades. Nature 386, 598–601 (1997).

    Article  CAS  Google Scholar 

  5. Morrone, M.C., Ross, J. & Burr, D.C. Apparent position of visual targets during real and simulated saccadic eye movements. J. Neurosci. 17, 7941–7953 (1997).

    Article  CAS  Google Scholar 

  6. Lappe, M., Awater, H. & Krekelberg, B. Postsaccadic visual references generate presaccadic compression of space. Nature 403, 892–895 (2000).

    Article  CAS  Google Scholar 

  7. Jonides, J., Irwin, D.E. & Yantis, S. Integrating visual information from successive fixations. Science 215, 192–194 (1982).

    Article  CAS  Google Scholar 

  8. Hayhoe, M., Lachter, J. & Feldman, J. Integration of form across saccadic eye movements. Perception 20, 393–402 (1991).

    Article  CAS  Google Scholar 

  9. Melcher, D. Persistence of visual memory for scenes. Nature 412, 401 (2001).

    Article  CAS  Google Scholar 

  10. Goldberg, M.E., Bisley, J., Powell, K.D., Gottlieb, J. & Kusunoki, M. The role of the lateral intraparietal area of the monkey in the generation of saccades and visuospatial attention. Ann. NY Acad. Sci. 956, 205–215 (2002).

    Article  Google Scholar 

  11. Moore, T. & Armstrong, K. Selective gating of visual signals by microstimulation of frontal cortex Nature 421, 370–373 (2003).

    Article  CAS  Google Scholar 

  12. Moore, T. & Fallah, M. Control of eye movements and spatial attention. Proc. Natl. Acad. Sci. USA 98, 1273–1276 (2001).

    Article  CAS  Google Scholar 

  13. McPeek, R.M., Maljkovic, V. & Nakayama, K. Saccades require focal attention and are facilitated by a short-term memory system. Vision Res. 39, 1555–1566 (1999).

    Article  CAS  Google Scholar 

  14. Leopold, D.A., Wilkie, M., Maier, A. & Logothetis, N.K. Stable perception of visually ambiguous patterns. Nat. Neurosci. 5, 605–609 (2002).

    Article  CAS  Google Scholar 

  15. Maier, A., Wilkie, M., Logothetis, N.K. & Leopold, D. Perception of temporally interleaved ambiguous patterns. Curr. Biol. 13, 1076–1085 (2003).

    Article  CAS  Google Scholar 

  16. McCollough, C. Colour adaptation of edge-detectors in the human visual system. Science 176, 541–543 (1965).

    Google Scholar 

  17. Necker, L.A. Observations on some remarkable optical phenomena seen in Switzerland; and on an optical phenomenon which occurs on viewing a figure of a crystal or geometrical solid. Lond. Edin. Phil. Mag. J. Sci. 1, 329–337 (1832).

    Google Scholar 

  18. Dutour, E.F. Discussion d'une question d'optique. L'Academie des Sciences. Memoires de Mathematique et de physique presentes par Divers Savants 3, 514–530 (1760).

  19. Ross, J., Badcock, D.R. & Hayes, A. Coherent global motion in the absence of coherent velocity signals. Curr. Biol. 10, 679–682 (2000).

    Article  CAS  Google Scholar 

  20. Shute, C.C.D. The McCollough Effect (Cambridge University Press, Cambridge, 1979).

    Google Scholar 

  21. MacKay, D.M. & MacKay, V. The time course of the McCollough effect and its physiological implications. J. Physiol. 237, 38–39 (1974).

    Google Scholar 

  22. Hoffman, J.E. & Subramaniam, B. The role of visual attention in saccadic eye movements. Percept. Psychophys. 57, 787–795 (1995).

    Article  CAS  Google Scholar 

  23. Wolf, W. Hauske, G. & Lupp, U. Interaction of pre- and post-saccadic patterns having the same co-ordinates in visual space. Vision Res. 20, 117–125 (1980).

    Article  CAS  Google Scholar 

  24. Juttner, M. & Rohler, R. Lateral information transfer across saccadic eye movements. Percept. Psychophys. 53, 210–220 (1993).

    Article  CAS  Google Scholar 

  25. Bridgeman, B., Hendry, D. & Stark, L. Failure to detect displacement of the visual world during saccadic eye movements. Vision Res. 15, 719–722 (1975).

    Article  CAS  Google Scholar 

  26. Burr, D.C., Holt, J., Johnstone, J.R. & Ross, J. Selective depression of motion sensitivity during saccades J. Physiol 333, 1–15 (1982).

    Article  CAS  Google Scholar 

  27. Goldberg, M.E. & Bruce, C.J. Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. J. Neurophysiol. 64, 489–508 (1990).

    Article  CAS  Google Scholar 

  28. Burr, D.C., Morrone, M.C. & Ross, J. Separate visual representations for perception and action revealed by saccadic eye movements. Curr. Biol. 11, 798–802 (2001).

    Article  CAS  Google Scholar 

  29. Ma-Wyatt, A., Morrone, M.C. & Ross, J. A blinding flash increases saccadic compression. J. Vis. 2, 569 (2002).

    Article  Google Scholar 

  30. Ma-Wyatt, A., Morrone, M.C. & Ross, J. Saccadic compression of visual space is significantly influenced by retinal illumination Invest. Opthamol. Vis. Sci. 44, 4105 (2003).

    Article  Google Scholar 

  31. Duhamel, J.R., Colby, L. & Goldberg, M.E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  CAS  Google Scholar 

  32. Krekelberg, B., Kubischik, M., Hoffmann, K.P. & Bremmer, F. Neural correlates of visual localization and perisaccadic mislocalization. Neuron 37, 537–545 (2003).

    Article  CAS  Google Scholar 

  33. Umeno, M.M. & Goldberg, M.E. Spatial processing in the monkey frontal eye field. II. Memory responses. J. Neurophysiol. 86, 2344–2352 (2001).

    Article  CAS  Google Scholar 

  34. Colby, C.L., Duhamel, J.R. & Goldberg, M.E. Visual, presaccadic and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol. 76, 2841–2852 (1996).

    Article  CAS  Google Scholar 

  35. Balan, P.F. & Ferrera, V.P. Effects of gaze shifts on maintenance of spatial memory in macaque frontal eye field. J. Neurosci. 23, 5446–5454 (2003).

    Article  CAS  Google Scholar 

  36. Thiele, A., Henning, P., Kubischik, M. & Hoffman, K.P. Neural mechanisms of saccadic suppression. Science 295, 2460–2462 (2002).

    Article  CAS  Google Scholar 

  37. Logothetis, N.K. Single units and conscious vision. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 1801–1818 (1998).

    Article  CAS  Google Scholar 

  38. Lumer, E.D., Friston, K.J. & Rees, G. Neural correlates of perceptual rivalry in the human brain. Science 280, 1930–1934 (1998).

    Article  CAS  Google Scholar 

  39. Parker, A.J., Krug, K. & Cumming, B.G. Neuronal activity and its links with the perception of multi-stable figures. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 1053–1062 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council. We thank S. Della Sala for alerting us to a possible connection between saccades and memory, and S. McKee and P. Verghese for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Ma-Wyatt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, J., Ma-Wyatt, A. Saccades actively maintain perceptual continuity. Nat Neurosci 7, 65–69 (2004). https://doi.org/10.1038/nn1163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing