Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Synaptic plasticity and self-organization in the hippocampus

A new paper reports that long-term potentiation in the hippocampus, a model of learning and memory, can induce sharp wave-ripple complexes, which are thought to be critical for the stabilization of memory traces in cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-organized burst of activity in the hippocampal CA3 region produces a field potential in the dendritic layer of CA1 and a short-lived fast-frequency field oscillation (200-Hz ripple) within stratum pyramidale, as well as a phase-related discharge of the neurons.

References

  1. Behrens, J., van den Boom, L.P., de Hoz, L., Friedman, A. & Heinemann, U. Nat. Neurosci. 8, 1560–1567 (2005).

    Article  CAS  Google Scholar 

  2. Buzsaki, G. Neuroscience 31, 551–570 (1989).

    Article  CAS  Google Scholar 

  3. Chrobak, J.J. & Buzsaki, G. J. Neurosci. 14, 6160–6170 (1994).

    Article  CAS  Google Scholar 

  4. Klausberger, T. et al. Nature 421, 844–848 (2003).

    Article  CAS  Google Scholar 

  5. Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A. & Buzsaki, G. J. Neurosci. 19, 274–287 (1999).

    Article  CAS  Google Scholar 

  6. Wilson, M.A. & McNaughton, B.L. Science 265, 676–679 (1994).

    Article  CAS  Google Scholar 

  7. Papatheodoropoulos, C. & Kostopoulos, G. Brain Res. Bull. 57, 187–193 (2002).

    Article  Google Scholar 

  8. Kubota, D., Colgin, L.L., Casale, M., Brucher, F.A. & Lynch, G. J. Neurophysiol. 89, 81–89 (2003).

    Article  Google Scholar 

  9. Yanovsky, Y., Brankack, J. & Haas, H.L. Neuroscience 64, 319–325 (1995).

    Article  CAS  Google Scholar 

  10. Maier, N. Nimmrich, & Draguhn, A. J. Physiol. (Lond.) 550, 873–887 (2003).

    Article  CAS  Google Scholar 

  11. Colgin, L.L., Jia, Y., Sabatier, J.M. & Lynch, G. Neurosci. Lett. 385, 46–51 (2005).

    Article  CAS  Google Scholar 

  12. LeBeau, F.E., Traub, R.D., Monyer, H., Whittington, M.A. & Buhl, E.H. Brain Res. Bull. 62, 3–13 (2003).

    Article  CAS  Google Scholar 

  13. King, C., Henze, D.A., Leinekugel, X. & Buzsaki, G. J. Physiol. (Lond.) 521, 159–167 (1999).

    Article  CAS  Google Scholar 

  14. Axmacher, N. & Miles, R. J. Physiol. (Lond.) 555, 713–725 (2004).

    Article  CAS  Google Scholar 

  15. Pouille, F. & Scanziani, M. Science 293, 1159–1163 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buzsáki, G., Chrobak, J. Synaptic plasticity and self-organization in the hippocampus. Nat Neurosci 8, 1418–1420 (2005). https://doi.org/10.1038/nn1105-1418

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1105-1418

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing