Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Do glia drive synaptic and cognitive impairment in disease?

Abstract

Synaptic dysfunction is a hallmark of many neurodegenerative and psychiatric brain disorders, yet we know little about the mechanisms that underlie synaptic vulnerability. Although neuroinflammation and reactive gliosis are prominent in virtually every CNS disease, glia are largely viewed as passive responders to neuronal damage rather than drivers of synaptic dysfunction. This perspective is changing with the growing realization that glia actively signal with neurons and influence synaptic development, transmission and plasticity through an array of secreted and contact-dependent signals. We propose that disruptions in neuron-glia signaling contribute to synaptic and cognitive impairment in disease. Illuminating the mechanisms by which glia influence synapse function may lead to the development of new therapies and biomarkers for synaptic dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Astrocytes and microglia interacting with synapses.

Debbie Maizels/Nature Publishing Group

Figure 2: Astrocyte and microglia regulation of synaptic formation, function and elimination, and potential implications for disease.

Debbie Maizels/Nature Publishing Group

Similar content being viewed by others

References

  1. Ransohoff, R.M. & Perry, V.H. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 27, 119–145 (2009).

    Article  CAS  Google Scholar 

  2. Wyss-Coray, T. & Rogers, J. Inflammation in Alzheimer disease–a brief review of the basic science and clinical literature. Cold Spring Harb. Perspect. Med. 2, a006346 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Terry, R.D. et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. DeKosky, S.T., Scheff, S.W. & Styren, S.D. Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neurodegeneration 5, 417–421 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Genoud, C. et al. Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol. 4, e343 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Witcher, M.R. et al. Three-dimensional relationships between perisynaptic astroglia and human hippocampal synapses. Glia 58, 572–587 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. Haber, M., Zhou, L. & Murai, K.K. Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J. Neurosci. 26, 8881–8891 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ullian, E.M., Sapperstein, S.K., Christopherson, K.S. & Barres, B.A. Control of synapse number by glia. Science 291, 657–661 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Clarke, L.E. & Barres, B.A. Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14, 311–321 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mauch, D.H. et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science 294, 1354–1357 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Christopherson, K.S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kucukdereli, H. et al. Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc. Natl. Acad. Sci. USA 108, E440–E449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Allen, N.J. et al. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486, 410–414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hughes, E.G., Elmariah, S.B. & Balice-Gordon, R.J. Astrocyte secreted proteins selectively increase hippocampal GABAergic axon length, branching, and synaptogenesis. Mol. Cell. Neurosci. 43, 136–145 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Chung, W.S. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394–400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rangroo Thrane, V. et al. Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering. Nat. Med. 19, 1643–1648 (2013).

    Article  PubMed  CAS  Google Scholar 

  17. Tanaka, K. et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276, 1699–1702 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Tani, H. et al. A local glutamate-glutamine cycle sustains synaptic excitatory transmitter release. Neuron 81, 888–900 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones, E.V. et al. Astrocytes control glutamate receptor levels at developing synapses through SPARC-beta-integrin interactions. J. Neurosci. 31, 4154–4165 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Henneberger, C., Papouin, T., Oliet, S.H. & Rusakov, D.A. Long-term potentiation depends on release of D-serine from astrocytes. Nature 463, 232–236 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Halassa, M.M. & Haydon, P.G. Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu. Rev. Physiol. 72, 335–355 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fujita, T. et al. Neuronal transgene expression in dominant-negative SNARE mice. J. Neurosci. 34, 16594–16604 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Han, X. et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12, 342–353 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Tremblay, M.E., Lowery, R.L. & Majewska, A.K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 8, e1000527 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Paolicelli, R.C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Schafer, D.P. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Neuron 74, 691–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parkhurst, C.N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harrison, J.K. et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl. Acad. Sci. USA 95, 10896–10901 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Zhan, Y. et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17, 400–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Roumier, A. et al. Prenatal activation of microglia induces delayed impairment of glutamatergic synaptic function. PLoS ONE 3, e2595 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Colonna, M. TREMs in the immune system and beyond. Nat. Rev. Immunol. 3, 445–453 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Williamson, L.L. & Bilbo, S.D. Chemokines and the hippocampus: a new perspective on hippocampal plasticity and vulnerability. Brain Behav. Immun. 30, 186–194 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rogers, J.T. . et al. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J. Neurosci. 31, 16241–16250 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, J. et al. Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase. Neuron 82, 195–207 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Stellwagen, D. & Malenka, R.C. Synaptic scaling mediated by glial TNF-alpha. Nature 440, 1054–1059 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Paloneva, J. et al. Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat. Genet. 25, 357–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Paloneva, J. et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am. J. Hum. Genet. 71, 656–662 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guerreiro, R. et al. TREM2 variants in Alzheimer's disease. N. Engl. J. Med. 368, 117–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer's disease. N. Engl. J. Med. 368, 107–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Rayaprolu, S. et al. TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson's disease. Mol. Neurodegener. 8, 19 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16, 273–280 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. van Berckel, B.N. et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol. Psychiatry 64, 820–822 (2008).

    Article  PubMed  Google Scholar 

  49. Patterson, P.H. Maternal infection and immune involvement in autism. Trends Mol. Med. 17, 389–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Penzes, P., Cahill, M.E., Jones, K.A., VanLeeuwen, J.-E. & Woolfrey, K.M. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? Nat. Neurosci. 14, 285–293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Feinberg, I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J. Psychiatr. Res. 17, 319–334 (1982).

    Article  PubMed  Google Scholar 

  52. Derecki, N.C. et al. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 483, 105–109 (2012).

    Article  CAS  Google Scholar 

  53. Wang, J. et al. Wild-type microglia do not reverse pathology in mouse models of Rett syndrome. Nature 521, E1–E4 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Goudriaan, A. et al. Specific glial functions contribute to schizophrenia susceptibility. Schizophr. Bull. 40, 925–935 (2014).

    Article  PubMed  Google Scholar 

  55. Matute, C., Melone, M., Vallejo-Illarramendi, A. & Conti, F. Increased expression of the astrocytic glutamate transporter GLT-1 in the prefrontal cortex of schizophrenics. Glia 49, 451–455 (2005).

    Article  PubMed  Google Scholar 

  56. Aida, T. et al. Astroglial glutamate transporter deficiency increases synaptic excitability and leads to pathological repetitive behaviors in mice. Neuropsychopharmacology 40, 1569–1579 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma, T.M. et al. Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion. Mol. Psychiatry 18, 557–567 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Matsuno, H. et al. A naturally occurring null variant of the NMDA type glutamate receptor NR3B subunit is a risk factor of schizophrenia. PLoS ONE 10, e0116319 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Eroglu, C. et al. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139, 380–392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, H. et al. Gabapentin decreases epileptiform discharges in a chronic model of neocortical trauma. Neurobiol. Dis. 48, 429–438 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, X. et al. Apoptotic engulfment pathway and schizophrenia. PLoS ONE 4, e6875 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Pas¸ca, S.P., Panagiotakos, G. & Dolmetsch, R.E. Generating human neurons in vitro and using them to understand neuropsychiatric disease. Annu. Rev. Neurosci. 37, 479–501 (2014).

    Article  CAS  Google Scholar 

  63. Lambert, J.-C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat. Genet. 45, 1452–1458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, B. et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell 153, 707–720 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ulrich, J.D. et al. Altered microglial response to Aβ plaques in APPPS1–21 mice heterozygous for TREM2. Mol. Neurodegener. 9, 20 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Jay, T.R. et al. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. J. Exp. Med. 212, 287–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 160, 1061–1071 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stephan, A.H., Barres, B.A. & Stevens, B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 35, 369–389 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Fonseca, M.I., Zhou, J., Botto, M. & Tenner, A.J. Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer's disease. J. Neurosci. 24, 6457–6465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rogers, J. et al. Complement activation and beta-amyloid-mediated neurotoxicity in Alzheimer's disease. Res. Immunol. 143, 624–630 (1992).

    Article  CAS  PubMed  Google Scholar 

  71. Shen, Y. et al. Complement activation by neurofibrillary tangles in Alzheimer's disease. Neurosci. Lett. 305, 165–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Orr, A.G. et al. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory. Nat. Neurosci. 18, 423–434 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jo, S. et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. Nat. Med. 20, 886–896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu, C.-C., Kanekiyo, T., Xu, H. & Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9, 106–118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Castellano, J.M. et al. Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci. Transl. Med. 3, 89ra57 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dumanis, S.B., DiBattista, A.M., Miessau, M., Moussa, C.E. & Rebeck, G.W. APOE genotype affects the pre-synaptic compartment of glutamatergic nerve terminals. J. Neurochem. 124, 4–14 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Stephan, A.H. et al. A dramatic increase of C1q protein in the CNS during normal aging. J. Neurosci. 33, 13460–13474 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Sun, J. Wallace and V. Murthy for providing the images used in Figure 1. We also thank S. Hong and E. Lehrman for helpful discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth Stevens.

Ethics declarations

Competing interests

B.A.B. is a co-founder of Annexon Biosciences, Inc., a company making new drugs to treat neurological disorders, and B.S. is on the scientific advisory board of Annexon Biosciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, WS., Welsh, C., Barres, B. et al. Do glia drive synaptic and cognitive impairment in disease?. Nat Neurosci 18, 1539–1545 (2015). https://doi.org/10.1038/nn.4142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing