Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Linear transformation of thalamocortical input by intracortical excitation

Subjects

Abstract

Neurons in thalamorecipient layers of sensory cortices integrate thalamocortical and intracortical inputs. Although we know that their functional properties can arise from the convergence of thalamic inputs, intracortical circuits could also be involved in thalamocortical transformations of sensory information. We silenced intracortical excitatory circuits with optogenetic activation of parvalbumin-positive inhibitory neurons in mouse primary visual cortex and compared visually evoked thalamocortical input with total excitation in the same layer 4 pyramidal neurons. We found that intracortical excitatory circuits preserved the orientation and direction tuning of thalamocortical excitation, with a linear amplification of thalamocortical signals of about threefold. The spatial receptive field of thalamocortical input was slightly elongated and was expanded by intracortical excitation in an approximately proportional manner. Thus, intracortical excitatory circuits faithfully reinforce the representation of thalamocortical information and may influence the size of the receptive field by recruiting additional inputs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optogenetic silencing of visual cortical circuits.
Figure 2: Linear amplification of orientation-tuned thalamocortical input.
Figure 3: Intracortical excitation preserves direction tuning.
Figure 4: Intracortical excitation expands visual receptive field.
Figure 5: Orientation tuning of thalamic neurons.

Similar content being viewed by others

References

  1. Douglas, R.J. & Martin, K.A. A functional microcircuit for cat visual cortex. J. Physiol. (Lond.) 440, 735–769 (1991).

    CAS  Google Scholar 

  2. Callaway, E.M. Local circuits in primary visual cortex of the macaque monkey. Annu. Rev. Neurosci. 21, 47–74 (1998).

    CAS  PubMed  Google Scholar 

  3. Hubel, D.H. & Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    CAS  Google Scholar 

  4. Reid, R.C. & Alonso, J.M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378, 281–284 (1995).

    CAS  PubMed  Google Scholar 

  5. Lampl, I., Anderson, J.S., Gillespie, D.C. & Ferster, D. Prediction of orientation selectivity from receptive field architecture in simple cells of cat visual cortex. Neuron 30, 263–274 (2001).

    CAS  PubMed  Google Scholar 

  6. Ferster, D. & Miller, K.D. Neural mechanisms of orientation selectivity in the visual cortex. Annu. Rev. Neurosci. 23, 441–471 (2000).

    CAS  PubMed  Google Scholar 

  7. Ferster, D., Chung, S. & Wheat, H. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380, 249–252 (1996).

    CAS  PubMed  Google Scholar 

  8. Chung, S. & Ferster, D. Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression. Neuron 20, 1177–1189 (1998).

    CAS  PubMed  Google Scholar 

  9. Ben-Yishai, R., Bar-Or, R.L. & Sompolinsky, H. Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. USA 92, 3844–3848 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Somers, D.C., Nelson, S.B. & Sur, M. An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448–5465 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Douglas, R.J., Koch, C., Mahowald, M., Martin, K.A. & Suarez, H.H. Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995).

    CAS  PubMed  Google Scholar 

  12. Ben-Yishai, R., Hansel, D. & Sompolinsky, H. Traveling waves and the processing of weakly tuned inputs in a cortical network module. J. Comput. Neurosci. 4, 57–77 (1997).

    CAS  PubMed  Google Scholar 

  13. Adorján, P., Levitt, J.B., Lund, J.S. & Obermayer, K. A model for the intracortical origin of orientation preference and tuning in macaque striate cortex. Vis. Neurosci. 16, 303–318 (1999).

    PubMed  Google Scholar 

  14. McLaughlin, D., Shapley, R., Shelley, M. & Wielaard, D.J. A neuronal network model of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer 4Calpha. Proc. Natl. Acad. Sci. USA 97, 8087–8092 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, B.H., Wu, G.K., Arbuckle, R., Tao, H.W. & Zhang, L.I. Defining cortical frequency tuning with recurrent excitatory circuitry. Nat. Neurosci. 10, 1594–1600 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Khibnik, L.A., Cho, K.K. & Bear, M.F. Relative contribution of feedforward excitatory connections to expression of ocular dominance plasticity in layer 4 of visual cortex. Neuron 66, 493–500 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamauchi, T., Hori, T. & Takahashi, T. Presynaptic inhibition by muscimol through GABAB receptors. Eur. J. Neurosci. 12, 3433–3436 (2000).

    CAS  PubMed  Google Scholar 

  18. Porter, J.T. & Nieves, D. Presynaptic GABAB receptors modulate thalamic excitation of inhibitory and excitatory neurons in the mouse barrel cortex. J. Neurophysiol. 92, 2762–2770 (2004).

    CAS  PubMed  Google Scholar 

  19. Zhang, F., Aravanis, A.M., Adamantidis, A., de Lecea, L. & Deisseroth, K. Circuit-breakers: optical technologies for probing neural signals and systems. Nat. Rev. Neurosci. 8, 577–581 (2007).

    CAS  PubMed  Google Scholar 

  20. Bernstein, J.G., Garrity, P.A. & Boyden, E.S. Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr. Opin. Neurobiol. 22, 61–71 (2012).

    CAS  PubMed  Google Scholar 

  21. Olsen, S.R., Bortone, D.S., Adesnik, H. & Scanziani, M. Gain control by layer six in cortical circuits of vision. Nature 483, 47–52 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ma, W.P. et al. Visual representations by cortical somatostatin inhibitory neurons—selective, but with weak and delayed responses. J. Neurosci. 30, 14371–14379 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, B.H. et al. Visual receptive field structure of cortical inhibitory neurons revealed by two-photon imaging guided recording. J. Neurosci. 29, 10520–10532 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Katzner, S. et al. Local origin of field potentials in visual cortex. Neuron 61, 35–41 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pfrieger, F.W., Gottmann, K. & Lux, H.D. Kinetics of GABAB receptor–mediated inhibition of calcium currents and excitatory synaptic transmission in hippocampal neurons in vitro. Neuron 12, 97–107 (1994).

    CAS  PubMed  Google Scholar 

  26. Niell, C.M. & Stryker, M.P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Priebe, N.J. & Ferster, D. Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57, 482–497 (2008).

    CAS  PubMed  Google Scholar 

  28. Volgushev, M., Vidyasagar, T.R. & Pei, X. A linear model fails to predict orientation selectivity of cells in the cat visual cortex. J. Physiol. (Lond.) 496, 597–606 (1996).

    CAS  Google Scholar 

  29. Cruikshank, S.J., Urabe, H., Nurmikko, A.V. & Connors, B.W. Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron 65, 230–245 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Piscopo, D.M., El-Danaf, R.N., Huberman, A.D. & Niell, C.M. Diverse visual features encoded in mouse lateral geniculate nucleus. J. Neurosci. 33, 4642–4656 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bruno, R.M. & Sakmann, B. Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312, 1622–1627 (2006).

    CAS  PubMed  Google Scholar 

  32. Jin, J., Wang, Y., Swadlow, H.A. & Alonso, J.M. Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex. Nat. Neurosci. 14, 232–238 (2011).

    CAS  PubMed  Google Scholar 

  33. Kerlin, A.M., Andermann, M.L., Berezovskii, V.K. & Reid, R.C. Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67, 858–871 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ko, H. et al. Functional specificity of local synaptic connections in neocortical networks. Nature 473, 87–91 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, B.H. et al. Broad inhibition sharpens orientation selectivity by expanding input dynamic range in mouse simple cells. Neuron 71, 542–554 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, Y.T. et al. Broadening of inhibitory tuning underlies contrast-dependent sharpening of orientation selectivity in mouse visual cortex. J. Neurosci. 32, 16466–16477 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Atallah, B.V., Bruns, W., Carandini, M. & Scanziani, M. Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73, 159–170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wilson, N.R., Runyan, C.A., Wang, F.L. & Sur, M. Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488, 343–348 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, S.H. et al. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488, 379–383 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, B.H. et al. Intervening inhibition underlies simple-cell receptive field structure in visual cortex. Nat. Neurosci. 13, 89–96 (2010).

    CAS  PubMed  Google Scholar 

  41. Tan, A.Y., Brown, B.D., Scholl, B., Mohanty, D. & Priebe, N.J. Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex. J. Neurosci. 31, 12339–12350 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Katzner, S., Busse, L. & Carandini, M. GABAA inhibition controls response gain in visual cortex. J. Neurosci. 31, 5931–5941 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Branco, T., Clark, B.A. & Hausser, M. Dendritic discrimination of temporal input sequences in cortical neurons. Science 329, 1671–1675 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ohki, K., Chung, S., Ch'ng, Y.H., Kara, P. & Reid, R.C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005).

    CAS  PubMed  Google Scholar 

  45. Allman, J., Miezin, F. & McGuinness, E. Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Annu. Rev. Neurosci. 8, 407–430 (1985).

    CAS  PubMed  Google Scholar 

  46. Gilbert, C.D. & Wiesel, T.N. The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Res. 30, 1689–1701 (1990).

    CAS  PubMed  Google Scholar 

  47. Levitt, J.B. & Lund, J.S. Contrast dependence of contextual effects in primate visual cortex. Nature 387, 73–76 (1997).

    CAS  PubMed  Google Scholar 

  48. Chisum, H.J., Mooser, F. & Fitzpatrick, D. Emergent properties of layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex. J. Neurosci. 23, 2947–2960 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Clopath, C., Busing, L., Vasilaki, E. & Gerstner, W. Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat. Neurosci. 13, 344–352 (2010).

    CAS  PubMed  Google Scholar 

  50. Ko, H. et al. The emergence of functional microcircuits in visual cortex. Nature 496, 96–100 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Grubb, M.S. & Thompson, I.D. Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus. J. Neurophysiol. 90, 3594–3607 (2003).

    PubMed  Google Scholar 

  52. Lin, J.Y., Lin, M.Z., Steinbach, P. & Tsien, R.Y. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys. J. 96, 1803–1814 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, Y.T., Ma, W.P., Pan, C.J., Zhang, L.I. & Tao, H.W. Broadening of cortical inhibition mediates developmental sharpening of orientation selectivity. J. Neurosci. 32, 3981–3991 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, G.K., Li, P., Tao, H.W. & Zhang, L.I. Nonmonotonic synaptic excitation and imbalanced inhibition underlying cortical intensity tuning. Neuron 52, 705–715 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Petreanu, L., Mao, T., Sternson, S.M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, M. et al. Functional elimination of excitatory feedforward inputs underlies developmental refinement of visual receptive fields in zebrafish. J. Neurosci. 31, 5460–5469 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wehr, M. & Zador, A.M. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426, 442–446 (2003).

    CAS  PubMed  Google Scholar 

  58. Wu, G.K., Tao, H.W. & Zhang, L.I. From elementary synaptic circuits to information processing in primary auditory cortex. Neurosci. Biobehav. Rev. 35, 2094–2104 (2011).

    PubMed  PubMed Central  Google Scholar 

  59. Tan, A.Y., Zhang, L.I., Merzenich, M.M. & Schreiner, C.E. Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. J. Neurophysiol. 92, 630–643 (2004).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Scanziani for the help on viral injection setup. This work was supported by grants to H.W.T. from the US National Institutes of Health (EY019049 and EY022478) and the Kirchgessner Foundation.

Author information

Authors and Affiliations

Authors

Contributions

H.W.T. conceived and designed the study. Y.L. and L.A.I. performed the experiment. Y.L. and L.I.Z. performed data analysis. B.L. contributed data on direction tuning. H.W.T. wrote the paper.

Corresponding author

Correspondence to Huizhong Whit Tao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 273 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Yt., Ibrahim, L., Liu, Bh. et al. Linear transformation of thalamocortical input by intracortical excitation. Nat Neurosci 16, 1324–1330 (2013). https://doi.org/10.1038/nn.3494

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3494

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing