Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activity recall in a visual cortical ensemble

Abstract

Cue-triggered recall of learned temporal sequences is an important cognitive function that has been attributed to higher brain areas. Here recordings in both anesthetized and awake rats demonstrate that after repeated stimulation with a moving spot that evoked sequential firing of an ensemble of primary visual cortex (V1) neurons, just a brief flash at the starting point of the motion path was sufficient to evoke a sequential firing pattern that reproduced the activation order evoked by the moving spot. The speed of recalled spike sequences may reflect the internal dynamics of the network rather than the motion speed. In awake rats, such recall was observed during a synchronized ('quiet wakeful') brain state having large-amplitude, low-frequency local field potential (LFP) but not in a desynchronized ('active') state having low-amplitude, high-frequency LFP. Such conditioning-enhanced, cue-evoked sequential spiking of a V1 ensemble may contribute to experience-based perceptual inference in a brain state–dependent manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequential spiking of neuronal ensemble in rat V1 evoked by moving spot.
Figure 2: Conditioning-induced increase of sequential spiking in anesthetized and awake rats.
Figure 3: Specificity of cue-triggered recall of spike sequence.
Figure 4: Persistence of conditioning-induced increase in sequential spiking in awake rats.
Figure 5: Dependence of sequence learning on conditioning parameters and NMDA receptor activation, measured in anesthetized rats.
Figure 6: Dependence of sequence recall on brain state in awake rats.

Similar content being viewed by others

References

  1. Lisman, J. & Redish, A.D. Prediction, sequences and the hippocampus. Phil. Trans. R. Soc. Lond. B 364, 1193–1201 (2009).

    Article  Google Scholar 

  2. Buckner, R.L. The role of the hippocampus in prediction and imagination. Annu. Rev. Psychol. 61, 27–48 (2010).

    Article  Google Scholar 

  3. Gelbard-Sagiv, H., Mukamel, R., Harel, M., Malach, R. & Fried, I. Internally generated reactivation of single neurons in human hippocampus during free recall. Science 322, 96–101 (2008).

    Article  CAS  Google Scholar 

  4. Lehn, H. et al. A specific role of the human hippocampus in recall of temporal sequences. J. Neurosci. 29, 3475–3484 (2009).

    Article  CAS  Google Scholar 

  5. Fortin, N.J., Agster, K.L. & Eichenbaum, H.B. Critical role of the hippocampus in memory for sequences of events. Nat. Neurosci. 5, 458–462 (2002).

    Article  CAS  Google Scholar 

  6. Kesner, R.P., Gilbert, P.E. & Barua, L.A. The role of the hippocampus in memory for the temporal order of a sequence of odors. Behav. Neurosci. 116, 286–290 (2002).

    Article  Google Scholar 

  7. Chiba, A.A., Kesner, R.P. & Reynolds, A.M. Memory for spatial location as a function of temporal lag in rats: role of hippocampus and medial prefrontal cortex. Behav. Neural Biol. 61, 123–131 (1994).

    Article  CAS  Google Scholar 

  8. Wilson, M.A. & Mcnaughton, B.L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    Article  CAS  Google Scholar 

  9. Nádasdy, Z., Hirase, H., Czurko, A., Csicsvari, J. & Buzsaki, G. Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19, 9497–9507 (1999).

    Article  Google Scholar 

  10. Ji, D. & Wilson, M.A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10, 100–107 (2007).

    Article  CAS  Google Scholar 

  11. Karlsson, M.P. & Frank, L.M. Awake replay of remote experiences in the hippocampus. Nat. Neurosci. 12, 913–918 (2009).

    Article  CAS  Google Scholar 

  12. Diba, K. & Buzsaki, G. Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 10, 1241–1242 (2007).

    Article  CAS  Google Scholar 

  13. O'Neill, J., Senior, T.J., Allen, K., Huxter, J.R. & Csicsvari, J. Reactivation of experience-dependent cell assembly patterns in the hippocampus. Nat. Neurosci. 11, 209–215 (2008).

    Article  CAS  Google Scholar 

  14. Recanzone, G.H., Merzenich, M.M., Jenkins, W.M., Grajski, K.A. & Dinse, H.R. Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. J. Neurophysiol. 67, 1031–1056 (1992).

    Article  CAS  Google Scholar 

  15. Recanzone, G.H., Schreiner, C.E. & Merzenich, M.M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13, 87–103 (1993).

    Article  CAS  Google Scholar 

  16. Fiorentini, A. & Berardi, N. Perceptual learning specific for orientation and spatial frequency. Nature 287, 43–44 (1980).

    Article  CAS  Google Scholar 

  17. Karni, A. & Sagi, D. Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc. Natl. Acad. Sci. USA 88, 4966–4970 (1991).

    Article  CAS  Google Scholar 

  18. Furmanski, C.S., Schluppeck, D. & Engel, S.A. Learning strengthens the response of primary visual cortex to simple patterns. Curr. Biol. 14, 573–578 (2004).

    Article  CAS  Google Scholar 

  19. Schoups, A., Vogels, R., Qian, N. & Orban, G. Practising orientation identification improves orientation coding in V1 neurons. Nature 412, 549–553 (2001).

    Article  CAS  Google Scholar 

  20. Li, W., Piech, V. & Gilbert, C.D. Perceptual learning and top-down influences in primary visual cortex. Nat. Neurosci. 7, 651–657 (2004).

    Article  CAS  Google Scholar 

  21. Niell, C.M. & Stryker, M.P. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65, 472–479 (2010).

    Article  CAS  Google Scholar 

  22. Bezdudnaya, T. et al. Thalamic burst mode and inattention in the awake LGNd. Neuron 49, 421–432 (2006).

    Article  CAS  Google Scholar 

  23. Euston, D.R., Tatsuno, M. & McNaughton, B.L. Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 318, 1147–1150 (2007).

    Article  CAS  Google Scholar 

  24. Bringuier, V., Chavane, F., Glaeser, L. & Fregnac, Y. Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283, 695–699 (1999).

    Article  CAS  Google Scholar 

  25. Han, F., Caporale, N. & Dan, Y. Reverberation of recent visual experience in spontaneous cortical waves. Neuron 60, 321–327 (2008).

    Article  CAS  Google Scholar 

  26. Davidson, T.J., Kloosterman, F. & Wilson, M.A. Hippocampal replay of extended experience. Neuron 63, 497–507 (2009).

    Article  CAS  Google Scholar 

  27. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  Google Scholar 

  28. Bi, G. & Poo, M. Synaptic modification by correlated activity: Hebb's postulate revisited. Annu. Rev. Neurosci. 24, 139–166 (2001).

    Article  CAS  Google Scholar 

  29. Froemke, R.C., Tsay, I.A., Raad, M., Long, J.D. & Dan, Y. Contribution of individual spikes in burst-induced long-term synaptic modification. J. Neurophysiol. 95, 1620–1629 (2006).

    Article  Google Scholar 

  30. Miller, K.D., Chapman, B. & Stryker, M.P. Visual responses in adult cat visual cortex depend on N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA 86, 5183–5187 (1989).

    Article  CAS  Google Scholar 

  31. Crochet, S. & Petersen, C.C. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat. Neurosci. 9, 608–610 (2006).

    Article  CAS  Google Scholar 

  32. Poulet, J.F. & Petersen, C.C. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885 (2008).

    Article  CAS  Google Scholar 

  33. Hebb, D.O. The Organization of Behavior (Wiley, New York, 1949).

  34. Yao, H. & Dan, Y. Stimulus timing-dependent plasticity in cortical processing of orientation. Neuron 32, 315–323 (2001).

    Article  CAS  Google Scholar 

  35. Fu, Y.X. et al. Temporal specificity in the cortical plasticity of visual space representation. Science 296, 1999–2003 (2002).

    Article  CAS  Google Scholar 

  36. Abbott, L.F. & Blum, K.I. Functional significance of long-term potentiation for sequence learning and prediction. Cereb. Cortex 6, 406–416 (1996).

    Article  CAS  Google Scholar 

  37. Rao, R.P.N. & Sejnowski, T.J. Predictive sequence learning in recurrent neocortical circuits. Adv. Neural Inf. Process. Syst. 12, 164–170 (2000).

    Google Scholar 

  38. Grinvald, A. & Hildesheim, R. VSDI: a new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 5, 874–885 (2004).

    Article  CAS  Google Scholar 

  39. Metherate, R. & Ashe, J.H. Nucleus basalis stimulation facilitates thalamocortical synaptic transmission in the rat auditory cortex. Synapse 14, 132–143 (1993).

    Article  CAS  Google Scholar 

  40. Kimura, F., Fukuda, M. & Tsumoto, T. Acetylcholine suppresses the spread of excitation in the visual cortex revealed by optical recording: possible differential effect depending on the source of input. Eur. J. Neurosci. 11, 3597–3609 (1999).

    Article  CAS  Google Scholar 

  41. Ahissar, E. et al. Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. Science 257, 1412–1415 (1992).

    Article  CAS  Google Scholar 

  42. Ego-Stengel, V., Shulz, D.E., Haidarliu, S., Sosnik, R. & Ahissar, E. Acetylcholine-dependent induction and expression of functional plasticity in the barrel cortex of the adult rat. J. Neurophysiol. 86, 422–437 (2001).

    Article  CAS  Google Scholar 

  43. Shulz, D.E., Sosnik, R., Ego, V., Haidarliu, S. & Ahissar, E. A neuronal analogue of state-dependent learning. Nature 403, 549–553 (2000).

    Article  CAS  Google Scholar 

  44. Yu, A.J. & Dayan, P. Uncertainty, neuromodulation, and attention. Neuron 46, 681–692 (2005).

    Article  CAS  Google Scholar 

  45. Kersten, D., Mamassian, P. & Yuille, A. Object perception as Bayesian inference. Annu. Rev. Psychol. 55, 271–304 (2004).

    Article  Google Scholar 

  46. Friston, K. A theory of cortical responses. Phil. Trans. R. Soc. Lond. B 360, 815–836 (2005).

    Article  Google Scholar 

  47. Ribeiro, S. et al. Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas. PLoS Biol. 2, E24 (2004).

    Article  Google Scholar 

  48. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic/Elsevier, Amsterdam, Boston, 2007).

  49. Hughes, A. A schematic eye for the rat. Vision Res. 19, 569–588 (1979).

    Article  CAS  Google Scholar 

  50. Gervasoni, D. et al. Global forebrain dynamics predict rat behavioral states and their transitions. J. Neurosci. 24, 11137–11147 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Buzsaki, H.D. Lv and H.S. Yao for comments and suggestions. This work was supported by 973 Program (2011CBA00400), SSSTC Program GJHZ0902 and the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-YW-R-29). Y.D. was supported in part by the Howard Hughes Medical Institute and M.-m.P. by a grant from the US National Institutes of Health (NS036999).

Author information

Authors and Affiliations

Authors

Contributions

S.X. and W.J. conducted all experiments and performed all data analyses; S.X., W.J., M-m.P. and Y.D. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Mu-ming Poo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 2594 kb)

Supplementary Movie 1

Awake head-fixed rat during visual stimulation. This video shows the behavior (eye movement, facial movement and whiskering) and LFP of awake head-fixed rat during testing and conditioning periods. Red circle indicates pupil size and position. Arrows point to reflections of the test stimuli (S and E, presented with an LCD monitor in front of the left eye) off the eyeball. The stationary bright spot on the left of the eye is the reflection of the infrared light source that provides illumination for the camera. Horizontal and vertical eye positions are shown in the traces below. Also shown are simultaneously recorded LFP, together with red/blue lines indicating synchronized/desynchronized brain states, and the short bars below indicating periods of visual stimulation. Note that the desynchronized brain state is associated with some facial and whisker movement. (MOV 3064 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Jiang, W., Poo, Mm. et al. Activity recall in a visual cortical ensemble. Nat Neurosci 15, 449–455 (2012). https://doi.org/10.1038/nn.3036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3036

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing