Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The toxic Aβ oligomer and Alzheimer's disease: an emperor in need of clothes

Abstract

The 'toxic Aβ oligomer' hypothesis has attracted considerable attention among Alzheimer's disease researchers as a way of resolving the lack of correlation between deposited amyloid-β (Aβ) in amyloid plaques—in terms of both amount and location—and cognitive impairment or neurodegeneration. However, the lack of a common, agreed-upon experimental description of the toxic Aβ oligomer makes interpretation and direct comparison of data between different research groups impossible. Here we critically review the evidence supporting toxic Aβ oligomers as drivers of neurodegeneration and make some suggestions that might facilitate progress in this complex field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of Aβ from amyloid precursor protein.
Figure 2: Size overlap in major natural and in vitro–generated Aβ oligomers.
Figure 3: Scheme of interconversion between different natural and synthetic Aβ assemblies based on pathways described in the literature.
Figure 4: Key steps of Aβ-initiated neurodegenerative cascade according to the amyloid hypothesis.
Figure 5: Molecular mechanisms of Aβ synaptotoxicity proposed in the literature.

Similar content being viewed by others

David S. Knopman, Helene Amieva, … David T. Jones

References

  1. Campioni, S. et al. A causative link between the structure of aberrant protein oligomers and their toxicity. Nat. Chem. Biol. 6, 140–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Hardy, J. & Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Karran, E., Mercken, M. & De Strooper, B. The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10, 698–712 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. De Strooper, B. Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process. Physiol. Rev. 90, 465–494 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Castellano, J.M. et al. Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci. Transl. Med. 3, 89ra57 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cerf, E., Gustot, A., Goormaghtigh, E., Ruysschaert, J.M. & Raussens, V. High ability of apolipoprotein E4 to stabilize amyloid-beta peptide oligomers, the pathological entities responsible for Alzheimer's disease. FASEB J. 25, 1585–1595 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Shen, J. & Kelleher, R.J. III. The presenilin hypothesis of Alzheimer's disease: evidence for a loss-of-function pathogenic mechanism. Proc. Natl. Acad. Sci. USA 104, 403–409 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Perrin, R.J., Fagan, A.M. & Holtzman, D.M. Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature 461, 916–922 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pike, C.J., Walencewicz, A.J., Glabe, C.G. & Cotman, C.W. In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res. 563, 311–314 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Harper, J.D., Wong, S.S., Lieber, C.M. & Lansbury, P.T. Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem. Biol. 4, 119–125 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Walsh, D.M., Lomakin, A., Benedek, G.B., Condron, M.M. & Teplow, D.B. Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J. Biol. Chem. 272, 22364–22372 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Oda, T. et al. Clusterin (apoJ) alters the aggregation of amyloid beta-peptide (A beta 1-42) and forms slowly sedimenting A beta complexes that cause oxidative stress. Exp. Neurol. 136, 22–31 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Lambert, M.P. et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Walsh, D.M. et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. McLean, C.A. et al. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann. Neurol. 46, 860–866 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Mc Donald, J.M. et al. The presence of sodium dodecyl sulphate-stable Abeta dimers is strongly associated with Alzheimer-type dementia. Brain 133, 1328–1341 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nilsberth, C. et al. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Abeta protofibril formation. Nat. Neurosci. 4, 887–893 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Tomiyama, T. et al. A new amyloid beta variant favoring oligomerization in Alzheimer's-type dementia. Ann. Neurol. 63, 377–387 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Kumar, S. et al. Extracellular phosphorylation of the amyloid beta-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer's disease. EMBO J. 30, 2255–2265 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jarrett, J.T., Berger, E.P. & Lansbury, P.T. Jr. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32, 4693–4697 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Portelius, E. et al. Distinct cerebrospinal fluid amyloid beta peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer's disease. Mol. Neurodegener. 5, 2 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lee, J., Culyba, E.K., Powers, E.T. & Kelly, J.W. Amyloid-beta forms fibrils by nucleated conformational conversion of oligomers. Nat. Chem. Biol. 7, 602–609 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bezprozvanny, I. Amyloid goes global. Sci. Signal. 2, pe16 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bitan, G., Fradinger, E.A., Spring, S.M. & Teplow, D.B. Neurotoxic protein oligomers–what you see is not always what you get. Amyloid 12, 88–95 (2005).

    Article  PubMed  Google Scholar 

  25. Hepler, R.W. et al. Solution state characterization of amyloid beta-derived diffusible ligands. Biochemistry 45, 15157–15167 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Wogulis, M. et al. Nucleation-dependent polymerization is an essential component of amyloid-mediated neuronal cell death. J. Neurosci. 25, 1071–1080 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuperstein, I. et al. Neurotoxicity of Alzheimer's disease Abeta peptides is induced by small changes in the Abeta42 to Abeta40 ratio. EMBO J. 29, 3408–3420 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cleary, J.P. et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat. Neurosci. 8, 79–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Ittner, L.M. et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 142, 387–397 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Li, S. et al. Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62, 788–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu, H.Y. et al. Amyloid beta induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J. Neurosci. 30, 2636–2649 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jo, J. et al. Abeta(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3beta. Nat. Neurosci. 14, 545–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Hardy, J. The amyloid hypothesis for Alzheimer's disease: a critical reappraisal. J. Neurochem. 110, 1129–1134 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Shankar, G.M. et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O'Nuallain, B. et al. Amyloid beta-protein dimers rapidly form stable synaptotoxic protofibrils. J. Neurosci. 30, 14411–14419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Noguchi, A. et al. Isolation and characterization of patient-derived, toxic, high mass amyloid beta-protein (Abeta) assembly from Alzheimer disease brains. J. Biol. Chem. 284, 32895–32905 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsumura, S. et al. Two distinct amyloid β-protein (Aβ) assembly pathways leading to oligomers and fibrils identified by combined fluorescence correlation spectroscopy, morphology and toxicity analyses. J. Biol. Chem. (2011).

  38. Shankar, G.M. et al. Biochemical and immunohistochemical analysis of an Alzheimer's disease mouse model reveals the presence of multiple cerebral Abeta assembly forms throughout life. Neurobiol. Dis. 36, 293–302 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lesné, S. et al. A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Hartley, D.M. et al. Transglutaminase induces protofibril-like amyloid beta-protein assemblies that are protease-resistant and inhibit long-term potentiation. J. Biol. Chem. 283, 16790–16800 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smith, D.P. et al. Copper-mediated amyloid-beta toxicity is associated with an intermolecular histidine bridge. J. Biol. Chem. 281, 15145–15154 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Galeazzi, L., Ronchi, P., Franceschi, C. & Giunta, S. In vitro peroxidase oxidation induces stable dimers of beta-amyloid (1-42) through dityrosine bridge formation. Amyloid 6, 7–13 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Baumketner, A. et al. Amyloid beta-protein monomer structure: a computational and experimental study. Protein Sci. 15, 420–428 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kayed, R. et al. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol. Neurodegener. 2, 18 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Caughey, B. & Lansbury, P.T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Hu, X. et al. Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc. Natl. Acad. Sci. USA 106, 20324–20329 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Townsend, M., Shankar, G.M., Mehta, T., Walsh, D.M. & Selkoe, D.J. Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J. Physiol. (Lond.) 572, 477–492 (2006).

    Article  CAS  Google Scholar 

  48. Reed, M.N. et al. Cognitive effects of cell-derived and synthetically derived Abeta oligomers. Neurobiol. Aging 32, 1784–1794 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Jin, M. et al. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. USA 108, 5819–5824 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamin, G. NMDA receptor-dependent signaling pathways that underlie amyloid beta-protein disruption of LTP in the hippocampus. J. Neurosci. Res. 87, 1729–1736 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Dineley, K.T. et al. Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer's disease. J. Neurosci. 21, 4125–4133 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Giuffrida, M.L. et al. The monomer state of beta-amyloid: where the Alzheimer's disease protein meets physiology. Rev. Neurosci. 21, 83–93 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Soucek, T., Cumming, R., Dargusch, R., Maher, P. & Schubert, D. The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron 39, 43–56 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Thathiah, A. & De Strooper, B. G protein-coupled receptors, cholinergic dysfunction, and Abeta toxicity in Alzheimer's disease. Sci. Signal. 2, re8 (2009).

    Article  PubMed  Google Scholar 

  55. Laurén, J., Gimbel, D.A., Nygaard, H.B., Gilbert, J.W. & Strittmatter, S.M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457, 1128–1132 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ross, C.A. & Poirier, M.A. Opinion: What is the role of protein aggregation in neurodegeneration? Nat. Rev. Mol. Cell Biol. 6, 891–898 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Collinge, J. & Clarke, A.R. A general model of prion strains and their pathogenicity. Science 318, 930–936 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Meyer-Luehmann, M. et al. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Eisele, Y.S. et al. Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 330, 980–982 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morales, R., Duran-Aniotz, C., Castilla, J., Estrada, L.D. & Soto, C. De novo induction of amyloid-beta deposition in vivo. Mol. Psychiatry (2011).

  61. Baker, H.F., Ridley, R.M., Duchen, L.W., Crow, T.J. & Bruton, C.J. Induction of beta (A4)-amyloid in primates by injection of Alzheimer's disease brain homogenate. Comparison with transmission of spongiform encephalopathy. Mol. Neurobiol. 8, 25–39 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Aguzzi, A. & Calella, A.M. Prions: protein aggregation and infectious diseases. Physiol. Rev. 89, 1105–1152 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Petkova, A.T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. Science 307, 262–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Anonymous. State of aggregation. Nat. Neurosci. 14, 399 (2011).

  65. Ono, K., Condron, M.M. & Teplow, D.B. Structure–neurotoxicity relationships of amyloid β-protein oligomers. Proc. Natl. Acad. Sci. USA 106, 14745–14750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, C. et al. Characteristics of amyloid-related oligomers revealed by crystal structures of macrocyclic beta-sheet mimics. J. Am. Chem. Soc. 133, 6736–6744 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schlenzig, D. et al. Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides. Biochemistry 48, 7072–7078 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Bleiholder, C., Dupuis, N.F., Wyttenbach, T. & Bowers, M.T. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to beta-sheet in amyloid fibril formation. Nat. Chem. 3, 172–177 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Shughrue, P.J. et al. Anti-ADDL antibodies differentially block oligomer binding to hippocampal neurons. Neurobiol. Aging 31, 189–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. O'Nuallain, B. et al. A monoclonal antibody against synthetic Abeta dimer assemblies neutralizes brain-derived synaptic plasticity-disrupting Abeta. J. Neurochem. 119, 189–201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lambert, M.P. et al. Vaccination with soluble Abeta oligomers generates toxicity-neutralizing antibodies. J. Neurochem. 79, 595–605 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Lambert, M.P. et al. Monoclonal antibodies that target pathological assemblies of Abeta. J. Neurochem. 100, 23–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Lee, E.B. et al. Targeting amyloid-beta peptide (Abeta) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Abeta precursor protein (APP) transgenic mice. J. Biol. Chem. 281, 4292–4299 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Moretto, N. et al. Conformation-sensitive antibodies against alzheimer amyloid-beta by immunization with a thioredoxin-constrained B-cell epitope peptide. J. Biol. Chem. 282, 11436–11445 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Schupf, N. et al. Peripheral Abeta subspecies as risk biomarkers of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 105, 14052–14057 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gardberg, A.S. et al. Molecular basis for passive immunotherapy of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 104, 15659–15664 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Englund, H. et al. Sensitive ELISA detection of amyloid-beta protofibrils in biological samples. J. Neurochem. 103, 334–345 (2007).

    CAS  PubMed  Google Scholar 

  79. Lord, A. et al. An amyloid-beta protofibril-selective antibody prevents amyloid formation in a mouse model of Alzheimer's disease. Neurobiol. Dis. 36, 425–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Hillen, H. et al. Generation and therapeutic efficacy of highly oligomer-specific beta-amyloid antibodies. J. Neurosci. 30, 10369–10379 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. O'Nuallain, B. & Wetzel, R. Conformational Abs recognizing a generic amyloid fibril epitope. Proc. Natl. Acad. Sci. USA 99, 1485–1490 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Barghorn, S. et al. Globular amyloid beta-peptide oligomer - a homogenous and stable neuropathological protein in Alzheimer's disease. J. Neurochem. 95, 834–847 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. van Helmond, Z., Heesom, K. & Love, S. Characterisation of two antibodies to oligomeric Abeta and their use in ELISAs on human brain tissue homogenates. J. Neurosci. Methods 176, 206–212 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Habicht, G. et al. Directed selection of a conformational antibody domain that prevents mature amyloid fibril formation by stabilizing Abeta protofibrils. Proc. Natl. Acad. Sci. USA 104, 19232–19237 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lafaye, P., Achour, I., England, P., Duyckaerts, C. & Rougeon, F. Single-domain antibodies recognize selectively small oligomeric forms of amyloid beta, prevent Abeta-induced neurotoxicity and inhibit fibril formation. Mol. Immunol. 46, 695–704 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Meli, G., Visintin, M., Cannistraci, I. & Cattaneo, A. Direct in vivo intracellular selection of conformation-sensitive antibody domains targeting Alzheimer's amyloid-beta oligomers. J. Mol. Biol. 387, 584–606 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Zameer, A., Kasturirangan, S., Emadi, S., Nimmagadda, S.V. & Sierks, M.R. Anti-oligomeric Abeta single-chain variable domain antibody blocks Abeta-induced toxicity against human neuroblastoma cells. J. Mol. Biol. 384, 917–928 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Sandberg, A. et al. Stabilization of neurotoxic Alzheimer amyloid-beta oligomers by protein engineering. Proc. Natl. Acad. Sci. USA 107, 15595–15600 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Villemagne, V.L. et al. Blood-borne amyloid-beta dimer correlates with clinical markers of Alzheimer's disease. J. Neurosci. 30, 6315–6322 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zempel, H., Thies, E., Mandelkow, E. & Mandelkow, E.M. Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J. Neurosci. 30, 11938–11950 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shipton, O.A. et al. Tau protein is required for amyloid β-induced impairment of hippocampal long-term potentiation. J. Neurosci. 31, 1688–1692 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. De Felice, F.G. et al. Alzheimer's disease-type neuronal tau hyperphosphorylation induced by A beta oligomers. Neurobiol. Aging 29, 1334–1347 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Wang, X., Perry, G., Smith, M.A. & Zhu, X. Amyloid-beta-derived diffusible ligands cause impaired axonal transport of mitochondria in neurons. Neurodegener. Dis. 7, 56–59 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Demuro, A. et al. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem. 280, 17294–17300 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Deshpande, A., Mina, E., Glabe, C. & Busciglio, J. Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons. J. Neurosci. 26, 6011–6018 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lasagna-Reeves, C.A., Glabe, C.G. & Kayed, R. Amyloid-β annular protofibrils evade fibrillar fate in Alzheimer's disease brain. J Biol Chem (2011).

  97. Xia, W. et al. Enhanced production and oligomerization of the 42-residue amyloid beta-protein by Chinese hamster ovary cells stably expressing mutant presenilins. J. Biol. Chem. 272, 7977–7982 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Podlisny, M.B. et al. Aggregation of secreted amyloid beta-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J. Biol. Chem. 270, 9564–9570 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Roher, A.E. et al. Morphology and toxicity of Abeta-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer's disease. J. Biol. Chem. 271, 20631–20635 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Hoshi, M. et al. Spherical aggregates of beta-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3beta. Proc. Natl. Acad. Sci. USA 100, 6370–6375 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the European Research Council (ERC); the Fund for Scientific Research, Flanders; the University of Leuven; the VIB; the Methusalem grant from the University of Leuven and the Flemish government; the Foundation for Alzheimer Research (SAO/FRMA); and the Interuniversity Attraction Poles Program. B.D.S. is the Arthur Bax and Anna Vanluffelen Chair for Alzheimer's Disease at the University of Leuven. The authors acknowledge T. Golde, D. Teplow, T. Härd and D. Walsh for fruitful discussions and/or sharing their amyloid-β preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart De Strooper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Conformation specific antibodies that react with oligomeric Aβ (PDF 228 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benilova, I., Karran, E. & De Strooper, B. The toxic Aβ oligomer and Alzheimer's disease: an emperor in need of clothes. Nat Neurosci 15, 349–357 (2012). https://doi.org/10.1038/nn.3028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing