Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Social regulation of aggression by pheromonal activation of Or65a olfactory neurons in Drosophila

Abstract

When two socially naive Drosophila males meet, they will fight. However, prior social grouping of males reduces their aggression. We found olfactory communication to be important for modulating Drosophila aggression. Although acute exposure to the male-specific pheromone 11-cis-vaccenyl acetate (cVA) elicited aggression through Or67d olfactory receptor neurons (ORNs), chronic cVA exposure reduced aggression through Or65a ORNs. Or65a ORNs were not acutely involved in aggression, but blockade of synaptic transmission of Or65a ORNs during social grouping or prior chronic cVA exposure eliminated social modulation of aggression. Artificial activation of Or65a ORNs by ectopic expression of the Drosophila gene TrpA1 was sufficient to reduce aggression. Social suppression of aggression requires subsets of local interneurons in the antennal lobe. Our results indicate that activation of Or65a ORNs is important for social modulation of male aggression, demonstrate that the acute and chronic effects of a single pheromone are mediated by two distinct types of ORNs, reveal a behaviorally important role for interneurons and suggest a chemical method to reduce aggression in animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Social regulation of aggression mimicked by male odor or cVA.
Figure 2: Electrophysiological responses to cVA in isolated, grouped and cVA-primed flies.
Figure 3: Aggression-suppressing effect of chronic cVA exposure mediated by Or65a ORNs.
Figure 4: Aggression-suppressing effect of chronic male exposure mediated by Or65a ORNs.
Figure 5: Or65a ORNs not required for aggression per se.
Figure 6: Aggression suppressed by chronic activation of Or65a ORNs.
Figure 7: Local circuit plasticity in antennal lobe required for social modulation of aggression.

Similar content being viewed by others

References

  1. Sokolowski, M.B. Social interactions in “simple” model systems. Neuron 65, 780–794 (2010).

    Article  CAS  Google Scholar 

  2. Rutter, M., Moffitt, T.E. & Caspi, A. Gene-environment interplay and psychopathology: multiple varieties but real effects. J. Child Psychol. Psychiatry 47, 226–261 (2006).

    Article  Google Scholar 

  3. Cacioppo, J.T. & Hawkley, L.C. Perceived social isolation and cognition. Trends Cogn. Sci. 13, 447–454 (2009).

    Article  Google Scholar 

  4. Fone, K.C. & Porkess, M.V. Behavioural and neurochemical effects of post-weaning social isolation in rodents: relevance to developmental neuropsychiatric disorders. Neurosci. Biobehav. Rev. 32, 1087–1102 (2008).

    Article  CAS  Google Scholar 

  5. Valzelli, L. Effect of socio-environmental isolation on brain biochemistry, behaviour and psychoactive drug activity. Ann. Ist. Super. Sanita 14, 173–182 (1978).

    CAS  PubMed  Google Scholar 

  6. Valzelli, L. The “isolation syndrome” in mice. Psychopharmacology (Berl.) 31, 305–320 (1973).

    Article  CAS  Google Scholar 

  7. Rose, J.K., Sangha, S., Rai, S., Norman, K.R. & Rankin, C.H. Decreased sensory stimulation reduces behavioral responding, retards development, and alters neuronal connectivity in Caenorhabditis elegans. J. Neurosci. 25, 7159–7168 (2005).

    Article  CAS  Google Scholar 

  8. Rai, S. & Rankin, C.H. Critical and sensitive periods for reversing the effects of mechanosensory deprivation on behavior, nervous system, and development in Caenorhabditis elegans. Dev. Neurobiol. 67, 1443–1456 (2007).

    Article  Google Scholar 

  9. van der Goes van Naters, W. & Carlson, J.R. Receptors and neurons for fly odors in Drosophila. Curr. Biol. 17, 606–612 (2007).

    Article  CAS  Google Scholar 

  10. Ronderos, D.S. & Smith, D.P. Activation of the T1 neuronal circuit is necessary and sufficient to induce sexually dimorphic mating behavior in Drosophila melanogaster. J. Neurosci. 30, 2595–2599 (2010).

    Article  CAS  Google Scholar 

  11. Kurtovic, A., Widmer, A. & Dickson, B.J. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446, 542–546 (2007).

    Article  CAS  Google Scholar 

  12. Wang, L. & Anderson, D.J. Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila. Nature 463, 227–231 (2010).

    Article  CAS  Google Scholar 

  13. Veenema, A.H. Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models? Front. Neuroendocrinol. 30, 497–518 (2009).

    Article  CAS  Google Scholar 

  14. Wang, L., Dankert, H., Perona, P. & Anderson, D.J. A common genetic target for environmental and heritable influences on aggressiveness in Drosophila. Proc. Natl. Acad. Sci. USA 105, 5657–5663 (2008).

    Article  CAS  Google Scholar 

  15. Yurkovic, A., Wang, O., Basu, A.C. & Kravitz, E.A. Learning and memory associated with aggression in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 103, 17519–17524 (2006).

    Article  CAS  Google Scholar 

  16. Svetec, N. & Ferveur, J.F. Social experience and pheromonal perception can change male-male interactions in Drosophila melanogaster. J. Exp. Biol. 208, 891–898 (2005).

    Article  Google Scholar 

  17. Hoffmann, A.A. The influence of age and experience with conspecifics on territorial behavior in Drosophila melanogaster. J. Insect Behav. 3, 1–12 (1990).

    Article  Google Scholar 

  18. Ha, T.S. & Smith, D.P. A pheromone receptor mediates 11-cis-vaccenyl acetate–induced responses in Drosophila. J. Neurosci. 26, 8727–8733 (2006).

    Article  CAS  Google Scholar 

  19. Bartelt, R.J., Schaner, A.M. & Jackson, L.L. cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J. Chem. Ecol. 11, 1747–1756 (1985).

    Article  CAS  Google Scholar 

  20. Brieger, G. & Butterworth, F.M. Drosophila melanogaster: identity of male lipid in reproductive system. Science 167, 1262 (1970).

    Article  CAS  Google Scholar 

  21. Getchell, T.V. & Shepherd, G.M. Adaptive properties of olfactory receptors analyzed with odor pulses of varying durations. J. Physiol. (Lond.) 282, 541–560 (1978).

    Article  CAS  Google Scholar 

  22. Störtkuhl, K.F., Hovemann, B.T. & Carlson, J.R. Olfactory adaptation depends on the Trp Ca2+ channel in Drosophila. J. Neurosci. 19, 4839–4846 (1999).

    Article  Google Scholar 

  23. Ayer, R.K. Jr. & Carlson, J. Olfactory physiology in the Drosophila antenna and maxillary palp: acj6 distinguishes two classes of odorant pathways. J. Neurobiol. 23, 965–982 (1992).

    Article  CAS  Google Scholar 

  24. Tan, J., Savigner, A., Ma, M. & Luo, M. Odor information processing by the olfactory bulb analyzed in gene-targeted mice. Neuron 65, 912–926 (2010).

    Article  CAS  Google Scholar 

  25. Ejima, A. et al. Generalization of courtship learning in Drosophila is mediated by cis-vaccenyl acetate. Curr. Biol. 17, 599–605 (2007).

    Article  CAS  Google Scholar 

  26. Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001).

    Article  CAS  Google Scholar 

  27. Han, D.D., Stein, D. & Stevens, L.M. Investigating the function of follicular subpopulations during Drosophila oogenesis through hormone-dependent enhancer-targeted cell ablation. Development 127, 573–583 (2000).

    CAS  PubMed  Google Scholar 

  28. McGuire, S.E., Le, P.T., Osborn, A.J., Matsumoto, K. & Davis, R.L. Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302, 1765–1768 (2003).

    Article  CAS  Google Scholar 

  29. Hamada, F.N. et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217–220 (2008).

    Article  CAS  Google Scholar 

  30. Jefferis, G.S. et al. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128, 1187–1203 (2007).

    Article  CAS  Google Scholar 

  31. Tanaka, N.K., Awasaki, T., Shimada, T. & Ito, K. Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr. Biol. 14, 449–457 (2004).

    Article  CAS  Google Scholar 

  32. Ruta, V. et al. A dimorphic pheromone circuit in Drosophila from sensory input to descending output. Nature 468, 686–690 (2010).

    Article  CAS  Google Scholar 

  33. Chou, Y.H. et al. Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nat. Neurosci. 13, 439–449 (2010).

    Article  CAS  Google Scholar 

  34. Couto, A., Alenius, M. & Dickson, B.J. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 15, 1535–1547 (2005).

    Article  CAS  Google Scholar 

  35. Fishilevich, E. & Vosshall, L.B. Genetic and functional subdivision of the Drosophila antennal lobe. Curr. Biol. 15, 1548–1553 (2005).

    Article  CAS  Google Scholar 

  36. Devaud, J.M., Acebes, A. & Ferrus, A. Odor exposure causes central adaptation and morphological changes in selected olfactory glomeruli in Drosophila. J. Neurosci. 21, 6274–6282 (2001).

    Article  CAS  Google Scholar 

  37. Silbering, A.F. & Galizia, C.G. Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. J. Neurosci. 27, 11966–11977 (2007).

    Article  CAS  Google Scholar 

  38. Root, C.M. et al. A presynaptic gain control mechanism fine-tunes olfactory behavior. Neuron 59, 311–321 (2008).

    Article  CAS  Google Scholar 

  39. Datta, S.R. et al. The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452, 473–477 (2008).

    Article  CAS  Google Scholar 

  40. Lin, H.H., Lai, J.S., Chin, A.L., Chen, Y.C. & Chiang, A.S. A map of olfactory representation in the Drosophila mushroom body. Cell 128, 1205–1217 (2007).

    Article  CAS  Google Scholar 

  41. Kazama, H. & Wilson, R.I. Homeostatic matching and nonlinear amplification at identified central synapses. Neuron 58, 401–413 (2008).

    Article  CAS  Google Scholar 

  42. Dierick, H.A. & Greenspan, R.J. Molecular analysis of flies selected for aggressive behavior. Nat. Genet. 38, 1023–1031 (2006).

    Article  CAS  Google Scholar 

  43. Lieber, T., Kidd, S. & Struhl, G. DSL-Notch signaling in the Drosophila brain in response to olfactory stimulation. Neuron 69, 468–481 (2011).

    Article  CAS  Google Scholar 

  44. Dacks, A.M., Green, D.S., Root, C.M., Nighorn, A.J. & Wang, J.W. Serotonin modulates olfactory processing in the antennal lobe of Drosophila. J. Neurogenet. 23, 366–377 (2009).

    Article  CAS  Google Scholar 

  45. Zhou, C., Rao, Y. & Rao, Y. A subset of octopaminergic neurons are important for Drosophila aggression. Nat. Neurosci. 11, 1059–1067 (2008).

    Article  CAS  Google Scholar 

  46. Ganguly-Fitzgerald, I., Donlea, J. & Shaw, P.J. Waking experience affects sleep need in Drosophila. Science 313, 1775–1781 (2006).

    Article  CAS  Google Scholar 

  47. Fujii, S., Krishnan, P., Hardin, P. & Amrein, H. Nocturnal male sex drive in Drosophila. Curr. Biol. 17, 244–251 (2007).

    Article  CAS  Google Scholar 

  48. Levine, J.D., Funes, P., Dowse, H.B. & Hall, J.C. Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298, 2010–2012 (2002).

    Article  CAS  Google Scholar 

  49. Chen, S., Lee, A.Y., Bowens, N.M., Huber, R. & Kravitz, E.A. Fighting fruit flies: a model system for the study of aggression. Proc. Natl. Acad. Sci. USA 99, 5664–5668 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Dickson (Research Institute of Molecular Pathology), P. Garrity (Brandeis University), T. Lee (Janelia Farm Research Campus), L. Luo (Stanford University), P. Shen (University of Georgia) and L. Vosshall (Rockefeller University) for providing stocks, W. Guo, C. Zhou and other members of the Rao laboratory for helpful discussions and technical assistance, and J. Tan and M. Luo for help with electrophysiology. This work was supported by the Ministry of Science and Technology (973 program No.2010CB833900).

Author information

Authors and Affiliations

Authors

Contributions

Y.R. conceived the project. Y.R., W.L. and X.L. designed the experiments. W.L. and X.L. performed the experiments. J.G. and Z.Y. synthesized cVA. Y.-H.Z. and J.-X.Z. performed the experiments shown in Supplementary Figure 1. W.L., X.L. and Y.R. wrote the paper.

Corresponding author

Correspondence to Yi Rao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 2780 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Liang, X., Gong, J. et al. Social regulation of aggression by pheromonal activation of Or65a olfactory neurons in Drosophila. Nat Neurosci 14, 896–902 (2011). https://doi.org/10.1038/nn.2836

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing