Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Muscarinic receptors induce LTD of NMDAR EPSCs via a mechanism involving hippocalcin, AP2 and PSD-95

Abstract

Although muscarinic acetylcholine receptors (mAChRs) and NMDA receptors (NMDARs) are important for synaptic plasticity, learning and memory, the manner in which they interact is poorly understood. We found that stimulation of muscarinic receptors, either by an agonist or by the synaptic release of acetylcholine, led to long-term depression (LTD) of NMDAR-mediated synaptic transmission. This form of LTD involved the release of Ca2+ from IP3-sensitive intracellular stores and was expressed via the internalization of NMDARs. Our results suggest that the molecular mechanism involves a dynamic interaction between the neuronal calcium sensor protein hippocalcin, the clathrin adaptor molecule AP2, the postsynaptic density enriched protein PSD-95 and NMDARs. We propose that hippocalcin binds to the SH3 region of PSD-95 under basal conditions, but it translocates to the plasma membrane on sensing Ca2+; in doing so, it causes PSD-95 to dissociate from NMDARs, permitting AP2 to bind and initiate their dynamin-dependent endocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of muscarinic receptors induces LTD of NMDAR-mediated synaptic transmission.
Figure 2: The synaptic activation of muscarinic receptors induces LTDN.
Figure 3: Hippocalcin is required for mAChR-LTDN.
Figure 4: Hip-RNAi blocks CCh-LTDN.
Figure 5: mAChR-LTDN involves the internalization of NMDARs.
Figure 6: Dynamic interactions between NMDARs, hippocalcin, AP2 and PSD-95.
Figure 7: Hippocalcin interacts with PSD-95.
Figure 8: The SH3 domain of PSD-95 is involved in CCh-LTDN.

Similar content being viewed by others

References

  1. Collingridge, G.L., Kehi, S.J. & McLennan, H. Excitatory amino acids in synaptic transmission in the Schaffer collateral–commissural pathway of the rat hippocampus. J. Physiol. (Lond.) 334, 33–46 (1983).

    Article  CAS  Google Scholar 

  2. Morris, R.G., Anderson, E., Lynch, G.S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774–776 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Bliss, T.V. & Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Fujii, S., Saito, K., Miyakawa, H., Ito, K. & Kato, H. Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input to CA1 neurons of guinea pig hippocampal slices. Brain Res. 555, 112–122 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Dudek, S.M. & Bear, M.F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl. Acad. Sci. USA 89, 4363–4367 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mulkey, R.M. & Malenka, R.C. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9, 967–975 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Collingridge, G.L., Peineau, S., Howland, J.G. & Wang, Y.T. Long-term depression in the CNS. Nat. Rev. Neurosci. 11, 459–473 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Bashir, Z.I., Alford, S., Davies, S.N., Randall, A.D. & Collingridge, G.L. Long-term potentiation of NMDA receptor–mediated synaptic transmission in the hippocampus. Nature 349, 156–158 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Abraham, W.C. & Bear, M.F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Collingridge, G.L., Isaac, J.T. & Wang, Y.T. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. 5, 952–962 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Mulkey, R.M., Herron, C.E. & Malenka, R.C. An essential role for protein phosphatases in hippocampal long-term depression. Science 261, 1051–1055 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Mulkey, R.M., Endo, S., Shenolikar, S. & Malenka, R.C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369, 486–488 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Peineau, S. et al. LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron 53, 703–717 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Peineau, S. et al. A systematic investigation of the protein kinases involved in NMDA receptor–dependent LTD: evidence for a role of GSK-3, but not other serine/threonine kinases. Mol. Brain 2, 22 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Palmer, C.L. et al. Hippocalcin functions as a calcium sensor in hippocampal LTD. Neuron 47, 487–494 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, M.J. et al. Synaptic accumulation of PSD-95 and synaptic function regulated by phosphorylation of serine-295 of PSD-95. Neuron 56, 488–502 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Xu, W. et al. Molecular dissociation of the role of PSD-95 in regulating synaptic strength and LTD. Neuron 57, 248–262 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harvey, J., Balasubramaniam, R. & Collingridge, G.L. Carbachol can potentiate N-methyl-D-aspartate responses in the rat hippocampus by a staurosporine and thapsigargin-insensitive mechanism. Neurosci. Lett. 162, 165–168 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Markram, H. & Segal, M. Acetylcholine potentiates responses to N-methyl-D-aspartate in the rat hippocampus. Neurosci. Lett. 113, 62–65 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Shinoe, T., Matsui, M., Taketo, M.M. & Manabe, T. Modulation of synaptic plasticity by physiological activation of M1 muscarinic acetylcholine receptors in the mouse hippocampus. J. Neurosci. 25, 11194–11200 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kirkwood, A., Rozas, C., Kirkwood, J., Perez, F. & Bear, M.F. Modulation of long-term synaptic depression in visual cortex by acetylcholine and norepinephrine. J. Neurosci. 19, 1599–1609 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dickinson, B.A. et al. A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs, GRIP and liprin-α. Mol. Brain 2, 18 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jo, J. et al. Experience-dependent modification of mechanisms of long-term depression. Nat. Neurosci. 9, 170–172 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Aramakis, V.B., Bandrowski, A.E. & Ashe, J.H. Role of muscarinic receptors, G proteins and intracellular messengers in muscarinic modulation of NMDA receptor–mediated synaptic transmission. Synapse 32, 262–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Jo, J. et al. Metabotropic glutamate receptor-mediated LTD involves two interacting Ca2+ sensors, NCS-1 and PICK1. Neuron 60, 1095–1111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Volk, L.J., Pfeiffer, B.E., Gibson, J.R. & Huber, K.M. Multiple Gq-coupled receptors converge on a common protein synthesis–dependent long-term depression that is affected in fragile X syndrome mental retardation. J. Neurosci. 27, 11624–11634 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harney, S.C., Rowan, M. & Anwyl, R. Long-term depression of NMDA receptor–mediated synaptic transmission is dependent on activation of metabotropic glutamate receptors and is altered to long-term potentiation by low intracellular calcium buffering. J. Neurosci. 26, 1128–1132 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ireland, D.R. & Abraham, W.C. Mechanisms of group I mGluR–dependent long-term depression of NMDA receptor-mediated transmission at Schaffer collateral–CA1 synapses. J. Neurophysiol. 101, 1375–1385 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Burgoyne, R.D. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signaling. Nat. Rev. Neurosci. 8, 182–193 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roche, K.W. et al. Molecular determinants of NMDA receptor internalization. Nat. Neurosci. 4, 794–802 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Hümmer, A. et al. Competitive and synergistic interactions of G protein β2 and Ca2+ channel β1b subunits with Cav2.1 channels, revealed by mammalian two-hybrid and fluorescence resonance energy transfer measurements. J. Biol. Chem. 278, 49386–49400 (2003).

    Article  PubMed  Google Scholar 

  32. Nakagawa, T. et al. Quaternary structure, protein dynamics and synaptic function of SAP97 controlled by L27 domain interactions. Neuron 44, 453–467 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Lin, Y., Skeberdis, V.A., Francesconi, A., Bennett, M.V. & Zukin, R.S. Postsynaptic density protein-95 regulates NMDA channel gating and surface expression. J. Neurosci. 24, 10138–10148 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Futai, K. et al. Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95–neuroligin. Nat. Neurosci. 10, 186–195 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lau, C.G. & Zukin, R.S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat. Rev. Neurosci. 8, 413–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Tzingounis, A.V., Kobayashi, M., Takamatsu, K. & Nicoll, R.A. Hippocalcin gates the calcium activation of the slow afterhyperpolarization in hippocampal pyramidal cells. Neuron 53, 487–493 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holbro, N., Grunditz, A. & Oertner, T.G. Differential distribution of endoplasmic reticulum controls metabotropic signaling and plasticity at hippocampal synapses. Proc. Natl. Acad. Sci. USA 106, 15055–15060 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carroll, R.C. et al. Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 96, 14112–14117 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Migaud, M. et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density–95 protein. Nature 396, 433–439 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Bhattacharyya, S., Biou, V., Xu, W., Schlüter, O. & Malenka, R.C. A critical role for PSD-95/AKAP interactions in endocytosis of synaptic AMPA receptors. Nat. Neurosci. 12, 172–181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ehrlich, I., Klein, M., Rumpel, S. & Malinow, R. PSD-95 is required for activity-driven synapse stabilization. Proc. Natl. Acad. Sci. USA 104, 4176–4181 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Elias, G.M., Elias, L.A., Apostolides, P.F., Kriegstein, A.R. & Nicoll, R.A. Differential trafficking of AMPA and NMDA receptors by SAP102 and PSD-95 underlies synapse development. Proc. Natl. Acad. Sci. USA 105, 20953–20958 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Anderson, W.W. & Collingridge, G.L. The LTP program: a data acquisition program for on-line analysis of long-term potentiation and other synaptic events. J. Neurosci. Methods 108, 71–83 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Biotechnology and Biological Sciences Research Council (K.C.), the Medical Research Council (G.L.C.), UK Alzheimer's Research Trust (K.C. and D.W.), The Royal Society (J.J.) and Brain Research Centre of the 21st Century Frontier Research Programme, funded by the Korean Ministry of Education and Science and Technology (K.C. and G.L.C.).

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived by K.C., and the experiments were designed by K.C., M.S. and G.L.C. The experiments were carried out by J.J., G.H.S., B.L.W., M.J.K., D.J.W., B.A.D., Y.-B.L., K.F. and M.A., and the manuscript was written by G.L.C., M.S. and K.C.

Corresponding author

Correspondence to Kwangwook Cho.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jo, J., Son, G., Winters, B. et al. Muscarinic receptors induce LTD of NMDAR EPSCs via a mechanism involving hippocalcin, AP2 and PSD-95. Nat Neurosci 13, 1216–1224 (2010). https://doi.org/10.1038/nn.2636

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2636

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing