Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1

Abstract

Synaptic spines are dynamic structures that regulate neuronal responsiveness and plasticity. We examined the role of the schizophrenia risk factor DISC1 in the maintenance of spine morphology and function. We found that DISC1 anchored Kalirin-7 (Kal-7), regulating access of Kal-7 to Rac1 and controlling the duration and intensity of Rac1 activation in response to NMDA receptor activation in both cortical cultures and rat brain in vivo. These results explain why Rac1 and its activator (Kal-7) serve as important mediators of spine enlargement and why constitutive Rac1 activation decreases spine size. This mechanism likely underlies disturbances in glutamatergic neurotransmission that have been frequently reported in schizophrenia that can lead to alteration of dendritic spines with consequential major pathological changes in brain function. Furthermore, the concept of a signalosome involving disease-associated factors, such as DISC1 and glutamate, may well contribute to the multifactorial and polygenetic characteristics of schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Short-term knockdown of DISC1 elicits spine enlargement in rat primary cortical neurons.
Figure 2: Protein interaction of DISC1 and Kal-7 regulates spine morphology in rat primary cortical neurons.
Figure 3: Augmentation of Kal-7–PSD-95 protein binding by DISC1 in rat primary cortical neurons.
Figure 4: Protein interaction of DISC1–Kal-7–PSD-95 influenced by activation of the NMDA-type glutamate receptor.
Figure 5: Regulation of Rac1 activity via signalosome of DISC1–Kal-7.
Figure 6: Long-term disturbance of DISC expression leads to spine shrinkage in rat primary cortical neurons.
Figure 7: Long-term suppression of DISC1 leads to spine shrinkage in slices and brains in vivo.

Similar content being viewed by others

References

  1. Goff, D.C. & Coyle, J.T. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am. J. Psychiatry 158, 1367–1377 (2001).

    Article  CAS  Google Scholar 

  2. Moghaddam, B. Bringing order to the glutamate chaos in schizophrenia. Neuron 40, 881–884 (2003).

    Article  CAS  Google Scholar 

  3. McCullumsmith, R.E., Clinton, S.M. & Meador-Woodruff, J.H. Schizophrenia as a disorder of neuroplasticity. Int. Rev. Neurobiol. 59, 19–45 (2004).

    Article  CAS  Google Scholar 

  4. Glantz, L.A. & Lewis, D.A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry 57, 65–73 (2000).

    Article  CAS  Google Scholar 

  5. Garey, L.J. et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J. Neurol. Neurosurg. Psychiatry 65, 446–453 (1998).

    Article  CAS  Google Scholar 

  6. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

    Article  CAS  Google Scholar 

  7. Matsuzaki, M., Honkura, N., Ellis-Davies, G.C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    Article  CAS  Google Scholar 

  8. Steen, R.G., Hamer, R.M. & Lieberman, J.A. Measurement of brain metabolites by 1H magnetic resonance spectroscopy in patients with schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology 30, 1949–1962 (2005).

    Article  CAS  Google Scholar 

  9. Pilowsky, L.S. et al. First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol. Psychiatry 11, 118–119 (2006).

    Article  CAS  Google Scholar 

  10. Mirnics, K., Middleton, F.A., Lewis, D.A. & Levitt, P. Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci. 24, 479–486 (2001).

    Article  CAS  Google Scholar 

  11. Hill, J.J., Hashimoto, T. & Lewis, D.A. Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Mol. Psychiatry 11, 557–566 (2006).

    Article  CAS  Google Scholar 

  12. Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854 (1998).

    Article  CAS  Google Scholar 

  13. Carlisle, H.J. & Kennedy, M.B. Spine architecture and synaptic plasticity. Trends Neurosci. 28, 182–187 (2005).

    Article  CAS  Google Scholar 

  14. Harrison, P.J. & West, V.A. Six degrees of separation: on the prior probability that schizophrenia susceptibility genes converge on synapses, glutamate and NMDA receptors. Mol. Psychiatry 11, 981–983 (2006).

    Article  CAS  Google Scholar 

  15. Hashimoto, R., Tankou, S., Takeda, M. & Sawa, A. Postsynaptic density: a key convergent site for schizophrenia susceptibility factors and possible target for drug development. Drugs Today (Barc) 43, 645–654 (2007).

    Article  CAS  Google Scholar 

  16. Sheng, M. & Hoogenraad, C.C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem. 76, 823–847 (2007).

    Article  CAS  Google Scholar 

  17. Blanpied, T.A., Kerr, J.M. & Ehlers, M.D. Structural plasticity with preserved topology in the postsynaptic protein network. Proc. Natl. Acad. Sci. USA 105, 12587–12592 (2008).

    Article  CAS  Google Scholar 

  18. St. Clair, D. et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 336, 13–16 (1990).

    Article  CAS  Google Scholar 

  19. Callicott, J.H. et al. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc. Natl. Acad. Sci. USA 102, 8627–8632 (2005).

    Article  CAS  Google Scholar 

  20. Cannon, T.D. et al. Association of DISCC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch. Gen. Psychiatry 62, 1205–1213 (2005).

    Article  CAS  Google Scholar 

  21. Ishizuka, K., Paek, M., Kamiya, A. & Sawa, A. A review of Disrupted-In-Schizophrenia-1 (DISC1): neurodevelopment, cognition, and mental conditions. Biol. Psychiatry 59, 1189–1197 (2006).

    Article  CAS  Google Scholar 

  22. Chubb, J.E., Bradshaw, N.J., Soares, D.C., Porteous, D.J. & Millar, J.K. The DISC locus in psychiatric illness. Mol. Psychiatry 13, 36–64 (2008).

    Article  CAS  Google Scholar 

  23. Kirkpatrick, B. et al. DISC1 immunoreactivity at the light and ultrastructural level in the human neocortex. J. Comp. Neurol. 497, 436–450 (2006).

    Article  Google Scholar 

  24. Kvajo, M. et al. A mutation in mouse Disc1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc. Natl. Acad. Sci. USA 105, 7076–7081 (2008).

    Article  CAS  Google Scholar 

  25. Kamiya, A. et al. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat. Cell Biol. 7, 1167–1178 (2005).

    Article  Google Scholar 

  26. Shi, S.H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    Article  CAS  Google Scholar 

  27. Xie, Z. et al. Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron 56, 640–656 (2007).

    Article  CAS  Google Scholar 

  28. Ma, X.M., Wang, Y., Ferraro, F., Mains, R.E. & Eipper, B.A. Kalirin-7 is an essential component of both shaft and spine excitatory synapses in hippocampal interneurons. J. Neurosci. 28, 711–724 (2008).

    Article  CAS  Google Scholar 

  29. Cahill, M. et al. Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes. Proc. Natl. Acad. Sci. USA 106, 13058–13063 (2009).

    Article  CAS  Google Scholar 

  30. Saneyoshi, T. et al. Activity-dependent synaptogenesis: regulation by a CaM-kinase kinase/CaM-kinase I/betaPIX signaling complex. Neuron 57, 94–107 (2008).

    Article  CAS  Google Scholar 

  31. Tolias, K.F. et al. The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron 45, 525–538 (2005).

    Article  CAS  Google Scholar 

  32. Bolger, G.B. et al. Scanning peptide array analyses identify overlapping binding sites for the signalling scaffold proteins, beta-arrestin and RACK1, in cAMP-specific phosphodiesterase PDE4D5. Biochem. J. 398, 23–36 (2006).

    Article  CAS  Google Scholar 

  33. Millar, J.K. et al. Drosoph. Inf. Serv.C1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310, 1187–1191 (2005).

    Article  CAS  Google Scholar 

  34. Murdoch, H. et al. Isoform-selective susceptibility of DISC1/phosphodiesterase-4 complexes to dissociation by elevated intracellular cAMP levels. J. Neurosci. 27, 9513–9524 (2007).

    Article  CAS  Google Scholar 

  35. Taya, S. et al. DISC1 regulates the transport of the NUDEL/LIS1/14–3-3epsilon complex through kinesin-1. J. Neurosci. 27, 15–26 (2007).

    Article  CAS  Google Scholar 

  36. Steward, O. & Worley, P.F. Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30, 227–240 (2001).

    Article  CAS  Google Scholar 

  37. Hsueh, Y.P., Kim, E. & Sheng, M. Disulfide-linked head-to-head multimerization in the mechanism of ion channel clustering by PSD-95. Neuron 18, 803–814 (1997).

    Article  CAS  Google Scholar 

  38. Djinovic-Carugo, K., Gautel, M., Ylanne, J. & Young, P. The spectrin repeat: a structural platform for cytoskeletal protein assemblies. FEBS Lett. 513, 119–123 (2002).

    Article  CAS  Google Scholar 

  39. Rabiner, C.A., Mains, R.E. & Eipper, B.A. Kalirin: a dual Rho guanine nucleotide exchange factor that is so much more than the sum of its many parts. Neuroscientist 11, 148–160 (2005).

    Article  CAS  Google Scholar 

  40. Luo, L. et al. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379, 837–840 (1996).

    Article  CAS  Google Scholar 

  41. Tashiro, A., Minden, A. & Yuste, R. Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb. Cortex 10, 927–938 (2000).

    Article  CAS  Google Scholar 

  42. Camargo, L.M. et al. Disrupted in Schizophrenia 1 interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol. Psychiatry 12, 74–86 (2007).

    Article  CAS  Google Scholar 

  43. Ishizuka, K. et al. Evidence that many of the DISC1 isoforms in C57BL/6J mice are also expressed in 129S6/SvEv mice. Mol. Psychiatry 12, 897–899 (2007).

    Article  CAS  Google Scholar 

  44. Jaaro-Peled, H. et al. Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through Neuregulin-1 and DISC1. Trends Neurosci. 32, 485–495 (2009).

    Article  CAS  Google Scholar 

  45. McGlashan, T.H. & Hoffman, R.E. Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch. Gen. Psychiatry 57, 637–648 (2000).

    Article  CAS  Google Scholar 

  46. Schurov, I.L., Handford, E.J., Brandon, N.J. & Whiting, P.J. Expression of disrupted in schizophrenia 1 (DISC1) protein in the adult and developing mouse brain indicates its role in neurodevelopment. Mol. Psychiatry 9, 1100–1110 (2004).

    Article  CAS  Google Scholar 

  47. Holtmaat, A.J. et al. Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45, 279–291 (2005).

    Article  CAS  Google Scholar 

  48. McGlashan, T.H. & Johannessen, J.O. Early detection and intervention with schizophrenia: rationale. Schizophr. Bull. 22, 201–222 (1996).

    Article  CAS  Google Scholar 

  49. Koike, H., Arguello, P.A., Kvajo, M., Karayiorgou, M. & Gogos, J.A. Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. Proc. Natl. Acad. Sci. USA 103, 3693–3697 (2006).

    Article  CAS  Google Scholar 

  50. Cai, X., Gu, Z., Zhong, P., Ren, Y. & Yan, Z. Serotonin 5-HT1A receptors regulate AMPA receptor channels through inhibiting Ca2+/calmodulin-dependent kinase II in prefrontal cortical pyramidal neurons. J. Biol. Chem. 277, 36553–36562.

Download references

Acknowledgements

We thank Y. Lema and P. Talalay for help with manuscript preparation, A. Gruber, P. O'Donnell, P.F. Worley, R.L. Huganir, J.D. Rothstein, N. Shahani, H. Ujike, S. Kuroda, H. Bito and M. Nuriya for scientific discussions and J. Gogos, R.A. Cerione, H. Cline and A. Jeromin for providing us with reagents. This work was supported by grants from the US National Institutes of Health (MH-084018, MH-069853 and MH-088753 to A.S., MH-071316 to P.P., and MH-084233 and NS-048911 to Z.Y.), as well as by grants from Stanley (A.S.), Cure Huntington's Disease Initiative (A.S.), HighQ (A.S.), S & R Foundation (A.S.), RUSK (A.S.), National Alliance for Research on Schizophrenia and Depression (A.S., A.H.-T., A.K. and P.P.), National Alliance for Autism Research (P.P.), Uehara (A.H.-T. and M.T.), Medical Research Council (G0600765 to M.D.H.) and the European Union (LSHB-CT-2006-037189 to M.D.H.).

Author information

Authors and Affiliations

Authors

Contributions

A.H.-T., M.T., N.G., S.S., H.M., A.J.D. and T.T. conducted the experiments. Y.M., A.J.S., K.I., D.P.S. and Z.X. provided assistance for the experiments. J.M.B., M.D.H., T.T., N.J.B., A.K., Z.Y. and P.P. contributed to experimental design. A.H.-T., M.D.H., N.J.B. and A.S. wrote the manuscript. A.S. led the overall experimental design of the entire project.

Corresponding author

Correspondence to Akira Sawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–18 (PDF 3226 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi-Takagi, A., Takaki, M., Graziane, N. et al. Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat Neurosci 13, 327–332 (2010). https://doi.org/10.1038/nn.2487

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2487

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing