Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intervening inhibition underlies simple-cell receptive field structure in visual cortex

Abstract

Synaptic inputs underlying spike receptive fields are important for understanding mechanisms of neuronal processing. Using whole-cell voltage-clamp recordings from neurons in mouse primary visual cortex, we examined the spatial patterns of their excitatory and inhibitory synaptic inputs evoked by On and Off stimuli. Neurons with either segregated or overlapped On/Off spike subfields had substantial overlaps between all the four synaptic subfields. The segregated receptive-field structures were generated by the integration of excitation and inhibition with a stereotypic 'overlap-but-mismatched' pattern: the peaks of excitatory On/Off subfields were separated and flanked colocalized peaks of inhibitory On/Off subfields. The small mismatch of excitation/inhibition led to an asymmetric inhibitory shaping of On/Off spatial tunings, resulting in a great enhancement of their distinctiveness. Thus, slightly separated On/Off excitation, together with intervening inhibition, can create simple-cell receptive-field structure and the dichotomy of receptive-field structures may arise from a fine-tuning of the spatial arrangement of synaptic inputs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Membrane potential (Vm) responses underlying SRF and ORF structures in layer 2/3 of the mouse V1.
Figure 2: Synaptic subfields examined by voltage-clamp recordings.
Figure 3: Grouping of cells on the basis of the structure of synaptic subfields.
Figure 4: Summary of the spatial relationships between synaptic subfields.
Figure 5: The inhibitory mechanism for the generation of the SRF structure.
Figure 6

Similar content being viewed by others

References

  1. Hubel, D.H. & Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  2. Heggelund, P. Quantitative studies of the discharge fields of single cells in cat striate cortex. J. Physiol. (Lond.) 373, 277–292 (1986).

    Article  CAS  Google Scholar 

  3. Hirsch, J.A., Alonso, J.M., Reid, R.C. & Martinez, L.M. Synaptic integration in striate cortical simple cells. J. Neurosci. 18, 9517–9528 (1998).

    Article  CAS  Google Scholar 

  4. Troyer, T.W., Krukowski, A.E., Priebe, N.J. & Miller, K.D. Contrast-invariant orientation tuning in cat visual cortex: feedforward tuning and correlation-based intracortical connectivity. J. Neurosci. 18, 5908–5927 (1998).

    Article  CAS  Google Scholar 

  5. Miller, K.D. Understanding layer 4 of the cortical circuit: a model based on cat V1. Cereb. Cortex 13, 73–82 (2003).

    Article  Google Scholar 

  6. Hirsch, J.A. & Martinez, L.M. Circuits that build visual cortical receptive fields. Trends Neurosci. 29, 30–39 (2006).

    Article  CAS  Google Scholar 

  7. Ferster, D. & Miller, K.D. Neural mechanisms of orientation selectivity in the visual cortex. Annu. Rev. Neurosci. 23, 441–471 (2000).

    Article  CAS  Google Scholar 

  8. Hirsch, J.A. et al. Functionally distinct inhibitory neurons at the first stage of visual cortical processing. Nat. Neurosci. 6, 1300–1308 (2003).

    Article  CAS  Google Scholar 

  9. Ferster, D. Spatially opponent excitation and inhibition in simple cells of the cat visual cortex. J. Neurosci. 8, 1172–1180 (1988).

    Article  CAS  Google Scholar 

  10. Borg-Graham, L.J., Monier, C. & Frégnac, Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 369–373 (1998).

    Article  CAS  Google Scholar 

  11. Sillito, A.M. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J. Physiol. (Lond.) 250, 305–329 (1975).

    Article  CAS  Google Scholar 

  12. Nelson, S., Toth, L., Sheth, B. & Sur, M. Orientation selectivity of cortical neurons during intracellular blockade of inhibition. Science 265, 774–777 (1994).

    Article  CAS  Google Scholar 

  13. Carandini, M. & Ferster, D. Membrane potential and firing rate in cat primary visual cortex. J. Neurosci. 20, 470–484 (2000).

    Article  CAS  Google Scholar 

  14. Mechler, F. & Ringach, D.L. On the classification of simple and complex cells. Vision Res. 42, 1017–1033 (2002).

    Article  Google Scholar 

  15. Abbott, L.F. & Chance, F.S. Rethinking the taxonomy of visual neurons. Nat. Neurosci. 5, 391–392 (2002).

    Article  CAS  Google Scholar 

  16. Priebe, N.J., Mechler, F., Carandini, M. & Ferster, D. The contribution of spike threshold to the dichotomy of cortical simple and complex cells. Nat. Neurosci. 7, 1113–1122 (2004).

    Article  CAS  Google Scholar 

  17. Palmer, L.A. & Davis, T.L. Receptive-field structure in cat striate cortex. J. Neurophysiol. 46, 260–276 (1981).

    Article  CAS  Google Scholar 

  18. Dean, A.F. & Tolhurst, D.J. On the distinctness of simple and complex cells in the visual cortex of the cat. J. Physiol. (Lond.) 344, 305–325 (1983).

    Article  CAS  Google Scholar 

  19. Jones, J.P. & Palmer, L.A. The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J. Neurophysiol. 58, 1187–1211 (1987).

    Article  CAS  Google Scholar 

  20. Mata, M.L. & Ringach, D.L. Spatial overlap of ON and OFF subregions and its relation to response modulation ratio in macaque primary visual cortex. J. Neurophysiol. 93, 919–928 (2005).

    Article  Google Scholar 

  21. Martinez, L.M. et al. Receptive field structure varies with layer in the primary visual cortex. Nat. Neurosci. 8, 372–379 (2005).

    Article  CAS  Google Scholar 

  22. Zhang, L.I., Tan, A.Y.Y., Schreiner, C.E. & Merzenich, M.M. Topography and synaptic shaping of direction selectivity in auditory cortex. Nature 424, 201–205 (2003).

    Article  CAS  Google Scholar 

  23. Wehr, M. & Zador, A.M. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426, 442–446 (2003).

    Article  CAS  Google Scholar 

  24. Higley, M.J. & Contreras, D. Balanced excitation and inhibition determine spike timing during frequency adaptation. J. Neurosci. 26, 448–457 (2006).

    Article  CAS  Google Scholar 

  25. Liu, B.H., Wu, G.K., Arbuckle, R., Tao, H.W. & Zhang, L.I. Defining cortical frequency tuning with recurrent excitatory circuitry. Nat. Neurosci. 10, 1594–1600 (2007).

    Article  CAS  Google Scholar 

  26. Wu, G.K., Arbuckle, R., Liu, B.H., Tao, H.W. & Zhang, L.I. Lateral sharpening of cortical frequency tuning by approximately balanced inhibition. Neuron 58, 132–143 (2008).

    Article  CAS  Google Scholar 

  27. Dräger, U.C. Receptive fields of single cells and topography in mouse visual cortex. J. Comp. Neurol. 160, 269–290 (1975).

    Article  Google Scholar 

  28. Mangini, N.J. & Pearlman, A.L. Laminar distribution of receptive field properties in the primary visual cortex of the mouse. J. Comp. Neurol. 193, 203–222 (1980).

    Article  CAS  Google Scholar 

  29. Métin, C., Godement, P. & Imbert, M. The primary visual cortex in the mouse: receptive field properties and functional organization. Exp. Brain Res. 69, 594–612 (1988).

    Article  Google Scholar 

  30. Niell, C.M. & Stryker, M.P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008).

    Article  CAS  Google Scholar 

  31. Liu, B.H. et al. Visual receptive field structure of cortical inhibitory neurons revealed by two-photon imaging guided recording. J. Neurosci. 29, 10520–10532 (2009).

    Article  CAS  Google Scholar 

  32. Tan, A.Y.Y., Zhang, L.I., Merzenich, M.M. & Schreiner, C.E. Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. J. Neurophysiol. 92, 630–643 (2004).

    Article  Google Scholar 

  33. Petreanu, L., Mao, T., Sternson, S.M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009).

    Article  CAS  Google Scholar 

  34. Debanne, D., Shulz, D.E. & Fregnac, Y. Activity-dependent regulation of 'on' and 'off' responses in cat visual cortical receptive fields. J. Physiol. (Lond.) 508, 523–548 (1998).

    Article  CAS  Google Scholar 

  35. Tao, H.W. & Poo, M.M. Activity-dependent matching of excitatory and inhibitory inputs during refinement of visual receptive fields. Neuron 45, 829–836 (2005).

    Article  CAS  Google Scholar 

  36. Liu, Y., Zhang, L.I. & Tao, H.W. Heterosynaptic scaling of developing GABAergic synapses: dependence on glutamatergic input and developmental stage. J. Neurosci. 27, 5301–5312 (2007).

    Article  CAS  Google Scholar 

  37. Dantzker, J.L. & Callaway, E.M. Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nat. Neurosci. 3, 701–707 (2000).

    Article  CAS  Google Scholar 

  38. Yoshimura, Y. & Callaway, E.M. Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nat. Neurosci. 8, 1552–1559 (2005).

    Article  CAS  Google Scholar 

  39. Wagor, E., Mangini, N.J. & Pearlman, A.L. Retinotopic organization of striate and extrastriate visual cortex in the mouse. J. Comp. Neurol. 193, 187–202 (1980).

    Article  CAS  Google Scholar 

  40. Moore, C.I. & Nelson, S.B. Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J. Neurophysiol. 80, 2882–2892 (1998).

    Article  CAS  Google Scholar 

  41. Margrie, T.W., Brecht, M. & Sakmann, B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch. 444, 491–498 (2002).

    Article  CAS  Google Scholar 

  42. de la Cera, E.G., Rodríguez, G., Llorente, L., Schaeffel, F. & Marcos, S. Optical aberrations in the mouse eye. Vision Res. 46, 2546–2553 (2006).

    Article  Google Scholar 

  43. Green, D.G., Powers, M.K. & Banks, M.S. Depth of focus, eye size and visual acuity. Vision Res. 20, 827–835 (1980).

    Article  CAS  Google Scholar 

  44. Remtulla, S. & Hallett, P.E. A schematic eye for the mouse and comparisons with the rat. Vision Res. 25, 21–31 (1985).

    Article  CAS  Google Scholar 

  45. Jagadeesh, B., Wheat, H.S., Kontsevich, L.L., Tyler, C.W. & Ferster, D. Direction selectivity of synaptic potentials in simple cells of the cat visual cortex. J. Neurophysiol. 78, 2772–2789 (1997).

    Article  CAS  Google Scholar 

  46. Somers, D.C., Nelson, S.B. & Sur, M. An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448–5465 (1995).

    Article  CAS  Google Scholar 

  47. Hines, M. NEURON—a program for simulation of nerve equations. in Neural Systems: Analysis and Modeling (ed. Eeckman, F.) 127–136 (Spring, New York, 1993).

    Chapter  Google Scholar 

  48. Schiller, P.H., Finlay, B.L. & Volman, S.F. Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. J. Neurophysiol. 39, 1288–1319 (1976).

    Article  CAS  Google Scholar 

  49. Azzalini, A. & Capitanio, A. Statistical applications of the multivariate skew-normal distribution. J. R. Stat. Soc. Series B Stat. Methodol. 61, 579–602 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Sampath and D. Li for their helpful suggestions. This work was supported by grants to H.W.T. from the US National Institutes of Health (EY018718 and EY019049) and The Karl Kirchgessner Foundation. L.I.Z. is supported by the Searle Scholar Program, the Klingenstein Foundation, and the David and Lucile Packard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li I Zhang or Huizhong Whit Tao.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 842 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Bh., Li, P., Sun, Y. et al. Intervening inhibition underlies simple-cell receptive field structure in visual cortex. Nat Neurosci 13, 89–96 (2010). https://doi.org/10.1038/nn.2443

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2443

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing