Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

On hearing with more than one ear: lessons from evolution

Abstract

Although ears capable of detecting airborne sound have arisen repeatedly and independently in different species, most animals that are capable of hearing have a pair of ears. We review the advantages that arise from having two ears and discuss recent research on the similarities and differences in the binaural processing strategies adopted by birds and mammals. We also ask how these different adaptations for binaural and spatial hearing might inform and inspire the development of techniques for future auditory prosthetic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of vertebrate ears.
Figure 2: Coincidence detection.
Figure 3: ITD computations in birds and mammals.

Similar content being viewed by others

References

  1. King, A.J., Schnupp, J.W.H. & Doubell, T.P. The shape of ears to come: dynamic coding of auditory space. Trends Cogn. Sci. 5, 261–270 (2001).

    Article  Google Scholar 

  2. Wightman, F.L. & Kistler, D.J. Monaural sound localization revisited. J. Acoust. Soc. Am. 101, 1050–1063 (1997).

    Article  CAS  Google Scholar 

  3. Carlile, S., Martin, R. & McAnally, K. Spectral information in sound localization. Int. Rev. Neurobiol. 70, 399–434 (2005).

    Article  Google Scholar 

  4. Stern, R.M. & Trahiotis, C. Models of binaural interaction. in Hearing (ed. Moore, B.C.J.) 347–380 (Academic, San Diego, 1995).

    Chapter  Google Scholar 

  5. van Hoesel, R.J. Exploring the benefits of bilateral cochlear implants. Audiol. Neurootol. 9, 234–246 (2004).

    Article  Google Scholar 

  6. Long, C.J., Carlyon, R.P., Litovsky, R.Y. & Downs, D.H. Binaural unmasking with bilateral cochlear implants. J. Assoc. Res. Otolaryngol. 7, 352–360 (2006).

    Article  Google Scholar 

  7. Grantham, D.W. & Wightman, F.L. Detectability of a pulsed tone in the presence of a masker with time-varying interaural correlation. J. Acoust. Soc. Am. 65, 1509–1517 (1979).

    Article  CAS  Google Scholar 

  8. Christensen-Dalsgaard, J. & Carr, C.E. Evolution of a sensory novelty: tympanic ears and the associated neural processing. Brain Res. Bull. 75, 365–370 (2008).

    Article  Google Scholar 

  9. Clack, J.A. The evolution of tetrapod ears and the fossil record. Brain Behav. Evol. 50, 198–212 (1997).

    Article  CAS  Google Scholar 

  10. Grothe, B., Carr, C.E., Casseday, J.H., Fritzsch, B. & Köppl, C. The evolution of central pathways and their neural processing patterns. in Evolution of the Vertebrate Auditory System (ed. Manley, G.A., Popper, A.N. & Fay, R.R.) (Springer, New York, 2004).

    Google Scholar 

  11. Jeffress, L.A. A place theory of sound localization. J. Comp. Physiol. Psychol. 41, 35–39 (1948).

    Article  CAS  Google Scholar 

  12. Carr, C.E. & Konishi, M. Axonal delay lines for time measurement in the owl's brainstem. Proc. Natl. Acad. Sci. USA 85, 8311–8315 (1988).

    Article  CAS  Google Scholar 

  13. Parks, T.N. & Rubel, E.W. Organization and development of brain stem auditory nuclei of the chicken: organization of projections from n. magnocellularis to n. laminaris. J. Comp. Neurol. 164, 435–448 (1975).

    Article  CAS  Google Scholar 

  14. Beckius, G.E., Batra, R. & Oliver, D.L. Axons from anteroventral cochlear nucleus that terminate in medial superior olive of cat: observations related to delay lines. J. Neurosci. 19, 3146–3161 (1999).

    Article  CAS  Google Scholar 

  15. Smith, P.H., Joris, P.X. & Yin, T.C. Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive. J. Comp. Neurol. 331, 245–260 (1993).

    Article  CAS  Google Scholar 

  16. Shamma, S.A., Shen, N.M. & Gopalaswamy, P. Stereausis: binaural processing without neural delays. J. Acoust. Soc. Am. 86, 989–1006 (1989).

    Article  CAS  Google Scholar 

  17. Agmon-Snir, H., Carr, C.E. & Rinzel, J. The role of dendrites in auditory coincidence detection. Nature 393, 268–272 (1998).

    Article  CAS  Google Scholar 

  18. Scott, L.L., Mathews, P.J. & Golding, N.L. Posthearing developmental refinement of temporal processing in principal neurons of the medial superior olive. J. Neurosci. 25, 7887–7895 (2005).

    Article  CAS  Google Scholar 

  19. Kuba, H., Yamada, R. & Ohmori, H. Evaluation of the limiting acuity of coincidence detection in nucleus laminaris of the chicken. J. Physiol. (Lond.) 552, 611–620 (2003).

    Article  CAS  Google Scholar 

  20. Ashida, G., Abe, K., Funabiki, K. & Konishi, M. Passive soma facilitates submillisecond coincidence detection in the owl's auditory system. J. Neurophysiol. 97, 2267–2282 (2007).

    Article  Google Scholar 

  21. Harper, N.S. & McAlpine, D. Optimal neural population coding of an auditory spatial cue. Nature 430, 682–686 (2004).

    Article  CAS  Google Scholar 

  22. Konishi, M. Coding of auditory space. Annu. Rev. Neurosci. 26, 31–55 (2003).

    Article  CAS  Google Scholar 

  23. Skottun, B.C., Shackleton, T.M., Arnott, R.H. & Palmer, A.R. The ability of inferior colliculus neurons to signal differences in interaural delay. Proc. Natl. Acad. Sci. USA 98, 14050–14054 (2001).

    Article  CAS  Google Scholar 

  24. Marder, E. & Goaillard, J.M. Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci. 7, 563–574 (2006).

    Article  CAS  Google Scholar 

  25. Köppl, C. & Carr, C.E. Maps of interaural time difference in the chicken's brainstem nucleus laminaris. Biol. Cybern. 98, 541–559 (2008).

    Article  Google Scholar 

  26. McAlpine, D., Jiang, D. & Palmer, A.R. A neural code for low-frequency sound localization in mammals. Nat. Neurosci. 4, 396–401 (2001).

    Article  CAS  Google Scholar 

  27. Brand, A., Behrend, O., Marquardt, T., McAlpine, D. & Grothe, B. Precise inhibition is essential for microsecond interaural time difference coding. Nature 417, 543–547 (2002).

    Article  CAS  Google Scholar 

  28. Takahashi, T.T. et al. The synthesis and use of the owl's auditory space map. Biol. Cybern. 89, 378–387 (2003).

    Article  CAS  Google Scholar 

  29. Butts, D.A. & Goldman, M.S. Tuning curves, neuronal variability, and sensory coding. PLoS Biol. 4, e92 (2006).

    Article  Google Scholar 

  30. Grothe, B. New roles for synaptic inhibition in sound localization. Nat. Rev. Neurosci. 4, 540–550 (2003).

    Article  CAS  Google Scholar 

  31. Zhou, Y., Carney, L.H. & Colburn, H.S. A model for interaural time difference sensitivity in the medial superior olive: interaction of excitatory and inhibitory synaptic inputs, channel dynamics, and cellular morphology. J. Neurosci. 25, 3046–3058 (2005).

    Article  CAS  Google Scholar 

  32. Leibold, C. & van Hemmen, J.L. Spiking neurons learning phase delays: how mammals may develop auditory time-difference sensitivity. Phys. Rev. Lett. 94, 168102 (2005).

    Article  Google Scholar 

  33. Joris, P. & Yin, T.C. A matter of time: internal delays in binaural processing. Trends Neurosci. 30, 70–78 (2007).

    Article  CAS  Google Scholar 

  34. Chase, S.M. & Young, E.D. First-spike latency information in single neurons increases when referenced to population onset. Proc. Natl. Acad. Sci. USA 104, 5175–5180 (2007).

    Article  CAS  Google Scholar 

  35. Pecka, M., Brand, A., Behrend, O. & Grothe, B. Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition. J. Neurosci. 28, 6914–6925 (2008).

    Article  CAS  Google Scholar 

  36. King, A.J., Schnupp, J.W.H. & Thompson, I.D. Signals from the superficial layers of the superior colliculus enable the development of the auditory space map in the deeper layers. J. Neurosci. 18, 9394–9408 (1998).

    Article  CAS  Google Scholar 

  37. Schnupp, J.W.H. & King, A.J. Coding for auditory space in the nucleus of the brachium of the inferior colliculus of the ferret. J. Neurophysiol. 78, 2717–2731 (1997).

    Article  CAS  Google Scholar 

  38. Campbell, R.A., Doubell, T.P., Nodal, F.R., Schnupp, J.W. & King, A.J. Interaural timing cues do not contribute to the map of space in the ferret superior colliculus: a virtual acoustic space study. J. Neurophysiol. 95, 242–254 (2006).

    Article  Google Scholar 

  39. Peña, J.L. & Konishi, M. Auditory spatial receptive fields created by multiplication. Science 292, 249–252 (2001).

    Article  Google Scholar 

  40. Macpherson, E.A. & Middlebrooks, J.C. Listener weighting of cues for lateral angle: the duplex theory of sound localization revisited. J. Acoust. Soc. Am. 111, 2219–2236 (2002).

    Article  Google Scholar 

  41. Hancock, K.E. & Delgutte, B. A physiologically based model of interaural time difference discrimination. J. Neurosci. 24, 7110–7117 (2004).

    Article  CAS  Google Scholar 

  42. Laback, B. & Majdak, P. Binaural jitter improves interaural time-difference sensitivity of cochlear implantees at high pulse rates. Proc. Natl. Acad. Sci. USA 105, 814–817 (2008).

    Article  CAS  Google Scholar 

  43. Yager, D.D. Structure, development, and evolution of insect auditory systems. Microsc. Res. Tech. 47, 380–400 (1999).

    Article  CAS  Google Scholar 

  44. Christensen-Dalsgaard, J. & Manley, G.A. Acoustical coupling of lizard eardrums. J. Assoc. Res. Otolaryngol. 9, 407–416 (2008).

    Article  Google Scholar 

  45. Yager, D.D. & Hoy, R.R. The cyclopean ear: a new sense for the praying mantis. Science 231, 727–729 (1986).

    Article  CAS  Google Scholar 

  46. Hyvarinen, A., Karhunen, J. & Oja, E. Independent Component Analysis (Wiley, New York, 2001).

    Book  Google Scholar 

  47. Fay, R.R. & Edds-Walton, P.L. Directional encoding by fish auditory systems. Phil. Trans. R. Soc. Lond. B 355, 1281–1284 (2000).

    Article  CAS  Google Scholar 

  48. MacLeod, K.M., Soares, D. & Carr, C.E. Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius novaehollandiae). J. Comp. Neurol. 495, 185–201 (2006).

    Article  Google Scholar 

  49. Walker, W.F. & Liem, K.F. Functional Anatomy of Vertebrates: An Evolutionary Perspective (Saunders College Publishing, 1994).

    Google Scholar 

Download references

Acknowledgements

Supported by UK Biotechnology and Biological Sciences Research Council grant BB/D009758/1, UK Engineering and Physical Sciences Research Council grant EP/C010841/1, a European Union FP6 grant to J.W.H.S., and US National Institutes of Health grants DCD000436 to C.E.C. and P30 DC0466 to the University of Maryland Center for the Evolutionary Biology of Hearing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan W H Schnupp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnupp, J., Carr, C. On hearing with more than one ear: lessons from evolution. Nat Neurosci 12, 692–697 (2009). https://doi.org/10.1038/nn.2325

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2325

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing