Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of the synaptic ribbon in transmitting the cone light response

Abstract

Cone photoreceptors distinguish small changes in light intensity while operating over a wide dynamic range. The cone synapse encodes intensity by modulating tonic neurotransmitter release, but precise encoding is limited by the quantal nature of synaptic vesicle exocytosis. Cones possess synaptic ribbons, structures that are thought to accelerate the delivery of vesicles for tonic release. Here we show that the synaptic ribbon actually constrains vesicle delivery, resulting in a maintained state of synaptic depression in darkness. Electron microscopy of cones from the lizard Anolis segrei revealed that depression is caused by the depletion of vesicles on the ribbon, indicating that resupply, not fusion, is the rate-limiting step that controls release. Responses from postsynaptic retinal neurons from the salamander Ambystoma tigrinum showed that the ribbon behaves like a capacitor, charging with vesicles in light and discharging in a phasic burst at light offset. Phasic release extends the operating range of the cone synapse to more accurately encode changes in light intensity, accentuating features that are salient to photopic vision.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Light stimulation collapses a Ca2+ gradient that is maintained in cone terminals in darkness.
Figure 2: Elevation of cone terminal Ca2+ reveals two kinetic components of release.
Figure 3: Ca2+ dependence of phasic and tonic release.
Figure 4: Electron microscopy of ribbon-associated vesicles.
Figure 5: Phasic release of resupplied vesicles on ribbons underlies the off response of postsynaptic neurons.
Figure 6: The kinetics of vesicle resupply on the ribbon.
Figure 7: Phasic release improves the encoding of a change in luminance.

Similar content being viewed by others

References

  1. Dowling, J.E. & Ripps, H. Effect of magnesium on horizontal cell activity in the skate retina. Nature 242, 101–103 (1973).

    Article  CAS  Google Scholar 

  2. Baylor, D.A., Fuortes, M.G.F. & O'Bryan, P.M. Receptive fields of cones in the retina of the turtle. J. Physiol. (Lond.) 214, 265–294 (1971).

    Article  CAS  Google Scholar 

  3. Ashmore, J.F. & Copenhagen, D.R. An analysis of transmission from cones to hyperpolarizing bipolar cells in the retina of the turtle. J. Physiol. (Lond.) 340, 569–597 (1983).

    Article  CAS  Google Scholar 

  4. Sterling, P. & Freed, M. How robust is a neural circuit? Vis. Neurosci. 24, 563–571 (2007).

    Article  Google Scholar 

  5. Rabl, K., Cadetti, L. & Thoreson, W.B. Kinetics of exocytosis is faster in cones than in rods. J. Neurosci. 25, 4633–4640 (2005).

    Article  CAS  Google Scholar 

  6. Mennerick, S. & Matthews, G. Ultrafast exocytosis elicited by calcium current in synaptic terminals of retinal bipolar neurons. Neuron 17, 1241–1249 (1996).

    Article  CAS  Google Scholar 

  7. Midorikawa, M., Tsukamoto, Y., Berglund, K., Ishii, M. & Tachibana, M. Different roles of ribbon-associated and ribbon-free active zones in retinal bipolar cells. Nat. Neurosci. 10, 1268–1276 (2007).

    Article  CAS  Google Scholar 

  8. DeVries, S.H. Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron 28, 847–856 (2000).

    Article  CAS  Google Scholar 

  9. Singer, J.H. & Diamond, J.S. Vesicle depletion and synaptic depression at a mammalian ribbon synapse. J. Neurophysiol. 95, 3191–3198 (2006).

    Article  CAS  Google Scholar 

  10. Heidelberger, R., Thoreson, W.B. & Witkovsky, P. Synaptic transmission at retinal ribbon synapses. Prog. Retin. Eye Res. 24, 682–720 (2005).

    Article  CAS  Google Scholar 

  11. Parsons, T.D., Lenzi, D., Almers, W. & Roberts, W.M. Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells. Neuron 13, 875–883 (1994).

    Article  CAS  Google Scholar 

  12. von Kriegstein, K., Schmitz, F., Link, E. & Südhof, T.C. Distribution of synaptic vesicle proteins in the mammalian retina identifies obligatory and facultative components of ribbon synapses. Eur. J. Neurosci. 11, 1335–1348 (1999).

    Article  CAS  Google Scholar 

  13. Sheng, Z. et al. Synaptic Ca2+ in darkness is lower in rods than cones, causing slower tonic release of vesicles. J. Neurosci. 27, 5033–5042 (2007).

    Article  CAS  Google Scholar 

  14. Rea, R., Dharia, A., Levitan, E.S., Sterling, P. & Kramer, R.H. Streamlined synaptic vesicle cycle in cone photoreceptor terminals. Neuron 41, 755–766 (2004).

    Article  CAS  Google Scholar 

  15. Nachman-Clewner, M., St. Jules, R. & Townes-Anderson, E. L-type calcium channels in the photoreceptor ribbon synapse: localization and role in plasticity. J. Comp. Neurol. 415, 1–16 (1999).

    Article  CAS  Google Scholar 

  16. Taylor, W.R. & Morgans, C. Localization and properties of voltage-gated calcium channels in cone photoreceptors of Tupaia belangeri. Vis. Neurosci. 15, 541–552 (1998).

    Article  CAS  Google Scholar 

  17. Barnes, S. & Hille, B. Ionic channels of the inner segment of tiger salamander cone photoreceptors. J. Gen. Physiol. 94, 719–743 (1989).

    Article  CAS  Google Scholar 

  18. Savchenko, A., Barnes, S. & Kramer, R.H. Cyclic nucleotide–gated channels mediate synaptic feedback by nitric oxide. Nature 390, 694–698 (1997).

    Article  CAS  Google Scholar 

  19. Kaplan, J.H. & Ellis-Davies, G.C. Photolabile chelators for the rapid photorelease of divalent cations. Proc. Natl. Acad. Sci. USA 85, 6571–6575 (1988).

    Article  CAS  Google Scholar 

  20. Van der Kloot, W. Estimating the timing of quantal releases during end-plate currents at the frog neuromuscular junction. J. Physiol. (Lond.) 402, 595–603 (1988).

    Article  CAS  Google Scholar 

  21. Sun, J. et al. A dual Ca2+-sensor model for neurotransmitter release in a central synapse. Nature 450, 676–682 (2007).

    Article  CAS  Google Scholar 

  22. Lasansky, A. Contacts between receptors and electrophysiologically identified neurones in the retina of the larval tiger salamander. J. Physiol. (Lond.) 285, 531–542 (1978).

    Article  CAS  Google Scholar 

  23. Pang, J.-J., Gao, F., Barrow, A., Jacoby, R.A. & Wu, S.M. How do tonic glutamatergic synapses evade receptor desensitization? J. Physiol. (Lond.) 586, 2889–2902 (2008).

    Article  CAS  Google Scholar 

  24. Yang, X.L. & Wu, S.M. Effects of background illumination on the horizontal cell responses in the tiger salamander retina. J. Neurosci. 9, 815–827 (1989).

    Article  CAS  Google Scholar 

  25. Rabl, K., Cadetti, L. & Thoreson, W.B. Paired-pulse depression at photoreceptor synapses. J. Neurosci. 26, 2555–2563 (2006).

    Article  CAS  Google Scholar 

  26. Snellman, J., Kaur, T., Shen, Y. & Nawy, S. Regulation of ON bipolar cell activity. Prog. Retin. Eye Res. 27, 450–463 (2008).

    Article  CAS  Google Scholar 

  27. Thoreson, W.B., Rabl, K., Townes-Anderson, E. & Heidelberger, R. A highly Ca2+-sensitive pool of vesicles contributes to linearity at the rod photoreceptor ribbon synapse. Neuron 42, 595–605 (2004).

    Article  CAS  Google Scholar 

  28. DeVries, S.H. Exocytosed protons feedback to suppress the Ca2+ current in mammalian cone photoreceptors. Neuron 32, 1107–1117 (2001).

    Article  CAS  Google Scholar 

  29. Hirasawa, H. & Kaneko, A. pH changes in the invaginating synaptic cleft mediate feedback from horizontal cells to cone photoreceptors by modulating Ca2+ channels. J. Gen. Physiol. 122, 657–671 (2003).

    Article  CAS  Google Scholar 

  30. Morgans, C.W. Neurotransmitter release at ribbon synapses in the retina. Immunol. Cell Biol. 78, 442–446 (2000).

    Article  CAS  Google Scholar 

  31. Sterling, P. & Matthews, G. Structure and function of ribbon synapses. Trends Neurosci. 28, 20–29 (2005).

    Article  CAS  Google Scholar 

  32. Gomis, A., Burrone, J. & Lagnado, L. Two actions of calcium regulate the supply of releasable vesicles at the ribbon synapse of retinal bipolar cells. J. Neurosci. 19, 6309–6317 (1999).

    Article  CAS  Google Scholar 

  33. Lenzi, D. & von Gersdorff, H. Structure suggests function: the case for synaptic ribbons as exocytotic nanomachines. Bioessays 23, 831–840 (2001).

    Article  CAS  Google Scholar 

  34. Parsons, T.D. & Sterling, P. Synaptic ribbon: conveyor belt or safety belt? Neuron 37, 379–382 (2003).

    Article  CAS  Google Scholar 

  35. LoGiudice, L., Sterling, P. & Matthews, G. Mobility and turnover of vesicles at the synaptic ribbon. J. Neurosci. 28, 3150–3158 (2008).

    Article  CAS  Google Scholar 

  36. Heidelberger, R. Adenosine triphosphate and the late steps in calcium-dependent exocytosis at a ribbon synapse. J. Gen. Physiol. 111, 225–241 (1998).

    Article  CAS  Google Scholar 

  37. Schein, S. & Ahmad, K.M. A clockwork hypothesis: synaptic release by rod photoreceptors must be regular. Biophys. J. 89, 3931–3949 (2005).

    Article  CAS  Google Scholar 

  38. Matthews, G. & Sterling, P. Evidence that vesicles undergo compound fusion on the synaptic ribbon. J. Neurosci. 28, 5403–5411 (2008).

    Article  CAS  Google Scholar 

  39. Glowatzki, E. & Fuchs, P.A. Transmitter release at the hair cell ribbon synapse. Nat. Neurosci. 5, 147–154 (2002).

    Article  CAS  Google Scholar 

  40. Singer, J.H., Lassova, L., Vardi, N. & Diamond, J.S. Coordinated multivesicular release at a mammalian ribbon synapse. Nat. Neurosci. 7, 826–833 (2004).

    Article  CAS  Google Scholar 

  41. von Gersdorff, H. & Matthews, G. Depletion and replenishment of vesicle pools at a ribbon-type synaptic terminal. J. Neurosci. 17, 1919–1927 (1997).

    Article  CAS  Google Scholar 

  42. Moser, T. & Beutner, D. Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proc. Natl. Acad. Sci. USA 97, 883–888 (2000).

    Article  CAS  Google Scholar 

  43. Holt, M., Cooke, A., Neef, A. & Lagnado, L. High mobility of vesicles supports continuous exocytosis at a ribbon synapse. Curr. Biol. 14, 173–183 (2004).

    Article  CAS  Google Scholar 

  44. Doan, T., Mendez, A., Detwiler, P.B., Chen, J. & Rieke, F. Multiple phosphorylation sites confer reproducibility of the rod's single-photon responses. Science 313, 530–533 (2006).

    Article  CAS  Google Scholar 

  45. Yang, X.L. & Wu, S.M. Response sensitivity and voltage gain of the rod- and cone-horizontal cell synapses in dark- and light-adapted tiger salamander retina. J. Neurophysiol. 76, 3863–3874 (1996).

    Article  CAS  Google Scholar 

  46. Burkhardt, D.A. Light adaptation and photopigment bleaching in cone photoreceptors in situ in the retina of the turtle. J. Neurosci. 14, 1091–1105 (1994).

    Article  CAS  Google Scholar 

  47. Schwartz, E.A. Responses of bipolar cells in the retina of the turtle. J. Physiol. (Lond.) 236, 211–224 (1974).

    Article  CAS  Google Scholar 

  48. Ruderman, D.L. & Bialek, W. Statistics of natural images: scaling in the woods. Phys. Rev. Lett. 73, 814–817 (1994).

    Article  CAS  Google Scholar 

  49. Bowen, R.W., Pokorny, J. & Smith, V.C. Sawtooth contrast sensitivity: decrements have the edge. Vision Res. 29, 1501–1509 (1989).

    CAS  PubMed  Google Scholar 

  50. Choi, S.-Y. et al. Encoding light intensity by the cone photoreceptor synapse. Neuron 48, 555–562 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Fortin, R. Heidelberger and F. Werblin for comments on the manuscript, R.S. Zucker for advice on Ca2+ imaging and R. Zalpuri for help with electron microscopy. This work was supported by grants from Research to Prevent Blindness to W.B.T. and the US National Institutes of Health to R.H.K. (EY015514) and W.B.T. (EY10542).

Author information

Authors and Affiliations

Authors

Contributions

S.L.J., S.-Y.C., W.B.T. and R.H.K. conceived the experiments; S.L.J. and S.-Y.C. performed the imaging experiments and analyzed the data; K.R., T.M.B. and W.B.T. carried out the electrophysiology experiments; S.L.J. performed data analysis and modeling; and S.L.J. and R.H.K. co-wrote the paper.

Corresponding author

Correspondence to Richard H Kramer.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 751 kb)

Supplementary Movie 1 (GIF format)

A video illustration showing how depletion and resupply affect synaptic transmission of the cone light response. Vesicles bind to the ribbon, descend towards the base and fuse with the plasma membrane near open Ca2+ channels. (GIF 1019 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackman, S., Choi, SY., Thoreson, W. et al. Role of the synaptic ribbon in transmitting the cone light response. Nat Neurosci 12, 303–310 (2009). https://doi.org/10.1038/nn.2267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2267

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing