Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A pooling-deconvolution strategy for biological network elucidation

Abstract

The generation of large-scale data sets is a fundamental requirement of systems biology. But despite recent advances, generation of such high-coverage data remains a major challenge. We developed a pooling-deconvolution strategy that can dramatically decrease the effort required. This strategy, pooling with imaginary tags followed by deconvolution (PI-deconvolution), allows the screening of 2n probe proteins (baits) in 2 × n pools, with n replicates for each bait. Deconvolution of baits with their binding partners (preys) can be achieved by reading the prey's profile from the 2 × n experiments. We validated this strategy for protein-protein interaction mapping using both proteome microarrays and a yeast two-hybrid array, demonstrating that PI-deconvolution can be used to identify interactions accurately with fewer experiments and better coverage. We also show that PI-deconvolution can be used to identify protein-small molecule interactions inferred from profiling the yeast deletion collection. PI-deconvolution should be applicable to a wide range of library-against-library approaches and can also be used to optimize array designs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme for PI-deconvolution.
Figure 2: PI-deconvolution applied to protein interaction mapping.
Figure 3: PI-deconvolution applied to drug resistance screening of 128 (=27) yeast deletion strains in 14 pools (64 strains per pool).
Figure 4: PI-deconvolution simulated on yeast interactome (DIP).

Similar content being viewed by others

References

  1. Phizicky, E., Bastiaens, P.I., Zhu, H., Snyder, M. & Fields, S. Protein analysis on a proteomic scale. Nature 422, 208–215 (2003).

    CAS  PubMed  Google Scholar 

  2. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    CAS  PubMed  Google Scholar 

  3. Ito, T. et al. Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl. Acad. Sci. USA 97, 1143–1147 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003).

    CAS  PubMed  Google Scholar 

  5. Li, S. et al. A map of the interactome network of the metazoan C. elegans. Science 303, 540–543 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Stelzl, U. et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005).

    CAS  PubMed  Google Scholar 

  7. Rual, J.F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).

    CAS  PubMed  Google Scholar 

  8. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    CAS  PubMed  Google Scholar 

  9. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    CAS  PubMed  Google Scholar 

  10. Butland, G. et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–537 (2005).

    CAS  PubMed  Google Scholar 

  11. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001).

    CAS  PubMed  Google Scholar 

  12. Michaud, G.A. et al. Analyzing antibody specificity with whole proteome microarrays. Nat. Biotechnol. 21, 1509–1512 (2003).

    CAS  PubMed  Google Scholar 

  13. Zhong, J., Zhang, H., Stanyon, C.A., Tromp, G. & Finley, R.L., Jr. A strategy for constructing large protein interaction maps using the yeast two-hybrid system: regulated expression arrays and two-phase mating. Genome Res. 13, 2691–2699 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hazbun, T.R. et al. Assigning function to yeast proteins by integration of technologies. Mol. Cell 12, 1353–1365 (2003).

    CAS  PubMed  Google Scholar 

  15. Wu, X., Hart, H., Cheng, C., Roach, P.J. & Tatchell, K. Characterization of Gac1p, a regulatory subunit of protein phosphatase type I involved in glycogen accumulation in Saccharomyces cerevisiae. Mol. Genet. Genomics 265, 622–635 (2001).

    CAS  PubMed  Google Scholar 

  16. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    CAS  PubMed  Google Scholar 

  17. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    CAS  PubMed  Google Scholar 

  18. Heitman, J., Movva, N.R. & Hall, M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905–909 (1991).

    CAS  PubMed  Google Scholar 

  19. Carpenter, C.L. & Cantley, L.C. Phosphoinositide kinases. Biochemistry 29, 11147–11156 (1990).

    CAS  PubMed  Google Scholar 

  20. Salwinski, L. et al. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 32 (Database issue), D449–D451 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Grigoriev, A. On the number of protein-protein interactions in the yeast proteome. Nucleic Acids Res. 31, 4157–4161 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bork, P. et al. Protein interaction networks from yeast to human. Curr. Opin. Struct. Biol. 14, 292–299 (2004).

    CAS  PubMed  Google Scholar 

  23. Janda, K.D. Tagged versus untagged libraries: methods for the generation and screening of combinatorial chemical libraries. Proc. Natl. Acad. Sci. USA 91, 10779–10785 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Agyare, F.D. et al. Mapping expressed sequence tag sites on yeast artificial chromosome clones of Arabidopsis thaliana DNA. Genome Res. 7, 1–9 (1997).

    CAS  PubMed  Google Scholar 

  25. Jeong, H., Mason, S.P., Barabasi, A.L. & Oltvai, Z.N. Lethality and centrality in protein networks. Nature 411, 41–42 (2001).

    CAS  PubMed  Google Scholar 

  26. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N. & Barabasi, A.L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).

    CAS  PubMed  Google Scholar 

  27. Massoud, T.F. & Gambhir, S.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580 (2003).

    CAS  PubMed  Google Scholar 

  28. Gray, P.A. et al. Mouse brain organization revealed through direct genome-scale TF expression analysis. Science 306, 2255–2257 (2004).

    CAS  PubMed  Google Scholar 

  29. Barry, J.R., Lee, E.A. & Messerschmitt, D.G. Digital communication 3rd edn. (Kluwer Academic Publishers, Boston, 2004).

    Google Scholar 

  30. Khan, A.H., Ossadtchi, A., Leahy, R.M. & Smith, D.J. Error-correcting microarray design. Genomics 81, 157–165 (2003).

    CAS  PubMed  Google Scholar 

  31. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    CAS  PubMed  Google Scholar 

  32. Zewail, A. et al. Novel functions of the phosphatidylinositol metabolic pathway discovered by a chemical genomics screen with wortmannin. Proc. Natl. Acad. Sci. USA 100, 3345–3350 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Xie, M.W. et al. Insights into TOR function and rapamycin response: Chemical genomic profiling by using a high-density cell array method. Proc. Natl. Acad. Sci. USA 102, 7215–7220 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Herschman, C. Miller, E. O'Shea, F. Fox, C. Stanyon and members of the Huang laboratory for critical readings and suggestions on the manuscript, the anonymous reviewer for introducing to us the idea of communication systems, Y. Du for assistance with drug screening and K. Scanlan for faithfully supporting our work. This research was partially supported by a Singleton Developmental Grant (to J.H.), University of California Systemwide Biotechnology Research & Education Program, Graduate Research and Education in Adaptive bioTechnology (GREAT) Training Grant 2005-268 (F.J. and J.H.), and a grant from the US National Center for Research Resources of the National Institutes of Health, P41 RR11823 (S.F.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul F Predki, Stanley Fields or Jing Huang.

Ethics declarations

Competing interests

Some Invitrogen products (including preotein microarrays) were used druing the course of this research. G.A.M, M.S. and P.F.P. are employed by Invitrogen Life technologies.

Supplementary information

Supplementary Table 1

Design of partially overlapping pools. (XLS 16 kb)

Supplementary Table 2

Pooling scheme for Y2H array screens. (XLS 16 kb)

Supplementary Table 3

Comparison of single bait screening data and PI-Deconvolution data. (XLS 154 kb)

Supplementary Table 4

Unambiguously deconvoluted prey-bait pairs in PI-Deconvolution data. (XLS 29 kb)

Supplementary Table 5

Possible causes for profile transformation. (XLS 11 kb)

Supplementary Table 6

List of 128 yeast strains used for drug resistance PI-Deconvolution screening and generation of pools. (XLS 43 kb)

Supplementary Table 7

Proteome microarray spot data. (XLS 31 kb)

Supplementary Note (PDF 326 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, F., Hazbun, T., Michaud, G. et al. A pooling-deconvolution strategy for biological network elucidation. Nat Methods 3, 183–189 (2006). https://doi.org/10.1038/nmeth859

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth859

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing