Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Region-specific saturation germline mutagenesis in mice using the Sleeping Beauty transposon system

Abstract

Recent consolidation of the whole-genome sequence with genome-wide transcriptome profiling revealed the existence of functional units within the genome in specific chromosomal regions, as seen in the coordinated expression of gene clusters and colocalization of functionally related genes. An efficient region-specific mutagenesis screen would greatly facilitate research in addressing the importance of these clusters. Here we use the 'local hopping' phenomenon of a DNA-type transposon, Sleeping Beauty (SB), for region-specific saturation mutagenesis. A transgenic mouse containing both transposon (acts as a mutagen) and transposase (recognizes and mobilizes the transposon) was bred for germ-cell transposition events, allowing us to generate many mutant mice. All genes within a 4-Mb region of the original donor site were mutated by SB, indicating the potential of this system for functional genomic studies within a specific chromosomal region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for generating mutant mice using the SB transposon system and its evaluation as a mutagenesis screen.
Figure 2: Gene-trap and region-specific saturation mutagenesis using the SB transposon system.
Figure 3: Detection of previously unidentified transcripts using the SB transposon system.
Figure 4: Applications for functional gene analysis utilizing the local hopping characteristic of SB.

Similar content being viewed by others

References

  1. Versteeg, R. et al. The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. Genome Res. 13, 1998–2004 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Caron, H. et al. The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291, 1289–1292 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Kmita, M. & Duboule, D. Organizing axes in time and space; 25 years of colinear tinkering. Science 301, 331–333 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Palstra, R.J. et al. The beta-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 35, 190–194 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Maclean, J.A., II et al. Rhox: a new homeobox gene cluster. Cell 120, 369–382 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Russell, W.L. et al. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc. Natl. Acad. Sci. USA 76, 5818–5819 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hitotsumachi, S., Carpenter, D.A. & Russell, W.L. Dose-repetition increases the mutagenic effectiveness of N-ethyl-N-nitrosourea in mouse spermatogonia. Proc. Natl. Acad. Sci. USA 82, 6619–6621 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hansen, J. et al. A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome. Proc. Natl. Acad. Sci. USA 100, 9918–9922 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carlson, C.M. & Largaespada, D.A. Insertional mutagenesis in mice: new perspectives and tools. Nat. Rev. Genet. 6, 568–580 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Horie, K. et al. Efficient chromosomal transposition of a Tc1/mariner- like transposon Sleeping Beauty in mice. Proc. Natl. Acad. Sci. USA 98, 9191–9196 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Horie, K. et al. Characterization of Sleeping Beauty transposition and its application to genetic screening in mice. Mol. Cell. Biol. 23, 9189–9207 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carlson, C.M. et al. Transposon mutagenesis of the mouse germline. Genetics 165, 243–256 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dupuy, A.J., Fritz, S. & Largaespada, D.A. Transposition and gene disruption in the male germline of the mouse. Genesis 30, 82–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Fischer, S.E., Wienholds, E. & Plasterk, R.H. Regulated transposition of a fish transposon in the mouse germ line. Proc. Natl. Acad. Sci. USA 98, 6759–6764 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo, G., Ivics, Z., Izsvak, Z. & Bradley, A. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 95, 10769–10773 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ivics, Z., Hackett, P.B., Plasterk, R.H. & Izsvak, Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Smits, P. et al. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev. Cell 1, 277–290 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Yi, S.E., Daluiski, A., Pederson, R., Rosen, V. & Lyons, K.M. The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127, 621–630 (2000).

    CAS  PubMed  Google Scholar 

  19. Yi, S.E. et al. The type I BMP receptor BmprIB is essential for female reproductive function. Proc. Natl. Acad. Sci. USA 98, 7994–7999 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karolchik, D. et al. The UCSC Genome Browser Database. Nucleic Acids Res. 31, 51–54 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kiyosawa, H. et al. Systematic genome-wide approach to positional candidate cloning for identification of novel human disease genes. Intern. Med. J. 34, 79–90 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Kile, B.T. et al. Functional genetic analysis of mouse chromosome 11. Nature 425, 81–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Yant, S.R. et al. High-resolution genome-wide mapping of transposon integration in mammals. Mol. Cell. Biol. 25, 2085–2094 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Collier, L.S., Carlson, C.M., Ravimohan, S., Dupuy, A.J. & Largaespada, D.A. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436, 272–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Dupuy, A.J., Akagi, K., Largaespada, D.A., Copeland, N.G. & Jenkins, N.A. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436, 221–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Ayyanathan, K. et al. Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev. 17, 1855–1869 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kokubu, C. et al. Undulated short-tail deletion mutation in the mouse ablates Pax1 and leads to ectopic activation of neighboring Nkx2–2 in domains that normally express Pax1. Genetics 165, 299–307 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Auwerx, J. et al. The European dimension for the mouse genome mutagenesis program. Nat. Genet. 36, 925–927 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Austin, C.P. et al. The knockout mouse project. Nat. Genet. 36, 921–924 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Devon, R.S., Porteous, D.J. & Brookes, A.J. Splinkerettes—improved vectorettes for greater efficiency in PCR walking. Nucleic Acids Res. 23, 1644–1645 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Kondoh, M. Kouno, E.S. Saito and R. Ikeda for helpful advice and excellent technical assistance. We also thank S. Makino and Y. Odan for administrative assistance in preparing this manuscript. This work was supported by grants from the New Energy and Industrial Technology Development Organization of Japan; Uehara Memorial Foundation; Preventure Program, Japan Science and Technology Agency; RIKEN, The Institute of Physical and Chemical Research; and a grant-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Takeda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Examples of two phenotypic screens generated by SB transposon system. (PDF 72 kb)

Supplementary Fig. 2

Determining the exact location of IR3 donor site on chromosome 12. (PDF 85 kb)

Supplementary Fig. 3

Gene trap and region-specific saturation mutagenesis using the SB transposon system for IF2 donor mouse. (PDF 214 kb)

Supplementary Fig. 4

Detection of new transcripts using the SB transposon system. (PDF 90 kb)

Supplementary Fig. 5

Screen shot of the UCSC Mouse Genome Browser Version mm4 with our SB database overview of transposon insertion sites for IR3 and IF2 donor mice. (PDF 136 kb)

Supplementary Table 1

List of primers used in the nested-PCR. (PDF 54 kb)

Supplementary Methods (PDF 59 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keng, V., Yae, K., Hayakawa, T. et al. Region-specific saturation germline mutagenesis in mice using the Sleeping Beauty transposon system. Nat Methods 2, 763–769 (2005). https://doi.org/10.1038/nmeth795

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth795

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing