Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Single-molecule analysis of DNA-protein complexes using nanopores

Abstract

We present a method for rapid measurement of DNA-protein interactions using voltage-driven threading of single DNA molecules through a protein nanopore. Electrical force applied to individual ssDNA-exonuclease I complexes pulls the two molecules apart, while ion current probes the dissociation rate of the complex. Nanopore force spectroscopy (NFS) reveals energy barriers affecting complex dissociation. This method can be applied to other nucleic acid–protein complexes, using protein or solid-state nanopore devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detecting ssDNA-ExoI complexes using a nanopore.
Figure 2: Monitoring ExoI digestion of DNA using a nanopore.
Figure 3: NFS of DNA-protein complexes.

Similar content being viewed by others

References

  1. Evans, E. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

    Article  CAS  Google Scholar 

  2. Meller, A., Nivon, L. & Branton, D. Phys. Rev. Lett. 86, 3435–3438 (2001).

    Article  CAS  Google Scholar 

  3. Kasianowicz, J.J., Henrickson, S.E., Weetall, H.H. & Robertson, B. Anal. Chem. 73, 2268–2272 (2001).

    Article  CAS  Google Scholar 

  4. Mathe, J., Visram, H., Viasnoff, V., Rabin, Y. & Meller, A. Biophys. J. 87, 3205–3212 (2004).

    Article  CAS  Google Scholar 

  5. Bates, M., Burns, M. & Meller, A. Biophys. J. 84, 2366–2372 (2003).

    Article  CAS  Google Scholar 

  6. Breyer, W.A. & Matthews, B.W. Nat. Struct. Biol. 7, 1125–1128 (2000).

    Article  CAS  Google Scholar 

  7. Lehman, I.R. & Nussbaum, A.L. J. Biol. Chem. 239, 2628–2636 (1964).

    CAS  PubMed  Google Scholar 

  8. Mathe, J., Arinstein, A., Rabin, Y. & Meller, A. Europhys. Lett. 73, 128–134 (2006).

    Article  CAS  Google Scholar 

  9. Nakane, J., Wiggin, M. & Marziali, A. Biophys. J. 87, 615–621 (2004).

    Article  CAS  Google Scholar 

  10. Dudko, O.K., Filippov, A.E., Klafter, J. & Urbakh, M. Proc. Natl. Acad. Sci. USA 100, 11378–11381 (2003).

    Article  CAS  Google Scholar 

  11. Hummer, G. & Szabo, A. Biophys. J. 85, 5–15 (2003).

    Article  CAS  Google Scholar 

  12. Dudko, O.K., Hummer, G. & Szabo, A. Phys. Rev. Lett. 96, 108101 (2006).

    Article  Google Scholar 

  13. Brody, R.S., Doherty, K.G. & Zimmerman, P.D. J. Biol. Chem. 261, 7136–7143 (1986).

    CAS  PubMed  Google Scholar 

  14. Mathe, J., Aksimentiev, A., Nelson, D.R., Schulten, K. & Meller, A. Proc. Natl. Acad. Sci. USA 102, 12377–12382 (2005).

    Article  CAS  Google Scholar 

  15. Akeson, M., Branton, D., Kasianowicz, J.J., Brandin, E. & Deamer, D.W. Biophys. J. 77, 3227–3233 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Branton, D. Deamer and A. Marziali for thoughtful critiques of early drafts of this manuscript. K. Lieberman edited the final draft and provided important advice on presentation of our results. S. Benner and R. Abu-Shumays provided technical assistance. This work was supported by US National Human Genome Research Institute Grant HG003703 (M.A.), National Institute of General Medical Sciences Grant GM075893 (A.M.), National Science Foundation Grant NIRT-26384 (A.M.) and Human Frontier Science Program Award RGP0036/2005 (A.M.). Concentrated stocks of Exonuclease I were a gift from New England Biolabs.

Author information

Authors and Affiliations

Authors

Contributions

B.H. performed the majority of nanopore experiments and wrote the first draft of the manuscript; A.C. performed nanopore experiments in Santa Cruz; R.D.W. and S.J.P. contributed ExoI purification and ExoI biochemical assays; A.K. contributed theoretical models; A.M. and M.A. directed the research and are responsible for the overall quality of the work.

Corresponding authors

Correspondence to Amit Meller or Mark Akeson.

Ethics declarations

Competing interests

R.D.W. and S.J.P. were employees of New England Biolabs when this work was done.

Supplementary information

Supplementary Fig. 1

ExoI-catalyzed hydrolysis of FAM-50mer or FAM-50mer-P substrates, in the absence or presence of 1 M KCl. (PDF 65 kb)

Supplementary Methods (PDF 100 kb)

Supplementary Note (PDF 100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornblower, B., Coombs, A., Whitaker, R. et al. Single-molecule analysis of DNA-protein complexes using nanopores. Nat Methods 4, 315–317 (2007). https://doi.org/10.1038/nmeth1021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing