Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

FISH-ing for captured contacts: towards reconciling FISH and 3C

Abstract

Chromosome conformation capture (3C) and fluorescence in situ hybridization (FISH) are two widely used technologies that provide distinct readouts of 3D chromosome organization. While both technologies can assay locus-specific organization, how to integrate views from 3C, or genome-wide Hi-C, and FISH is far from solved. Contact frequency, measured by Hi-C, and spatial distance, measured by FISH, are often assumed to quantify the same phenomena and used interchangeably. Here, however, we demonstrate that contact frequency is distinct from average spatial distance, both in polymer simulations and in experimental data. Performing a systematic analysis of the technologies, we show that this distinction can create a seemingly paradoxical relationship between 3C and FISH, both in minimal polymer models with dynamic looping interactions and in loop-extrusion simulations. Together, our results indicate that cross-validation of Hi-C and FISH should be carefully designed, and that jointly considering contact frequency and spatial distance is crucial for fully understanding chromosome organization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustrated relationship between 3C and FISH.
Figure 2: Experimental data demonstrate the complex relationship between Hi-C and FISH.
Figure 3: Simulations demonstrate the effect of introducing a single dynamic loop.
Figure 4: Simulations clarify the complex relationship between contact frequency and median spatial distance.
Figure 5: Loop-extrusion simulations can display divergent contact frequency and spatial distance.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).

    Article  CAS  Google Scholar 

  2. Denker, A. & de Laat, W. A long-distance chromatin affair. Cell 162, 942–943 (2015).

    Article  CAS  Google Scholar 

  3. Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661–678 (2016).

    Article  CAS  Google Scholar 

  4. Schmitt, A.D., Hu, M. & Ren, B. Genome-wide mapping and analysis of chromosome architecture. Nat. Rev. Mol. Cell Biol. 17, 743–755 (2016).

    Article  CAS  Google Scholar 

  5. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  Google Scholar 

  6. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  Google Scholar 

  7. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    Article  CAS  Google Scholar 

  8. Imakaev, M.V., Fudenberg, G. & Mirny, L.A. Modeling chromosomes: beyond pretty pictures. FEBS Lett. 589 20 Pt A, 3031–3036 (2015).

    Article  CAS  Google Scholar 

  9. Fraser, J., Williamson, I., Bickmore, W.A. & Dostie, J. An overview of genome organization and how we got there: from FISH to Hi-C. Microbiol. Mol. Biol. Rev. 79, 347–372 (2015).

    Article  Google Scholar 

  10. Sachs, R.K., van den Engh, G., Trask, B., Yokota, H. & Hearst, J.E. A random-walk/giant-loop model for interphase chromosomes. Proc. Natl. Acad. Sci. USA 92, 2710–2714 (1995).

    Article  CAS  Google Scholar 

  11. Shopland, L.S. et al. Folding and organization of a contiguous chromosome region according to the gene distribution pattern in primary genomic sequence. J. Cell Biol. 174, 27–38 (2006).

    Article  CAS  Google Scholar 

  12. Branco, M.R. & Pombo, A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol. 4, e138 (2006).

    Article  Google Scholar 

  13. Tanabe, H. et al. Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc. Natl. Acad. Sci. USA 99, 4424–4429 (2002).

    Article  CAS  Google Scholar 

  14. Bolzer, A. et al. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 3, e157 (2005).

    Article  Google Scholar 

  15. Shachar, S., Voss, T.C., Pegoraro, G., Sciascia, N. & Misteli, T. Identification of gene positioning factors using high-throughput imaging mapping. Cell 162, 911–923 (2015).

    Article  CAS  Google Scholar 

  16. Joyce, E.F., Williams, B.R., Xie, T. & Wu, C.-t. Identification of genes that promote or antagonize somatic homolog pairing using a high-throughput FISH-based screen. PLoS Genet. 8, e1002667 (2012).

    Article  CAS  Google Scholar 

  17. Boettiger, A.N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016).

    Article  CAS  Google Scholar 

  18. Beliveau, B.J. et al. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat. Commun. 6, 7147 (2015).

    Article  CAS  Google Scholar 

  19. Fabre, P.J. et al. Nanoscale spatial organization of the HoxD gene cluster in distinct transcriptional states. Proc. Natl. Acad. Sci. USA 112, 13964–13969 (2015).

    Article  CAS  Google Scholar 

  20. Giorgetti, L. & Heard, E. Closing the loop: 3C versus DNA FISH. Genome Biol. 17, 215 (2016).

    Article  Google Scholar 

  21. Hakim, O. et al. Diverse gene reprogramming events occur in the same spatial clusters of distal regulatory elements. Genome Res. 21, 697–706 (2011).

    Article  CAS  Google Scholar 

  22. Giorgetti, L. et al. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157, 950–963 (2014).

    Article  CAS  Google Scholar 

  23. Rao, S.S.P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  Google Scholar 

  24. Nora, E.P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  Google Scholar 

  25. Dixon, J.R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  Google Scholar 

  26. Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602 (2016).

    Article  CAS  Google Scholar 

  27. Williamson, I. et al. Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev. 28, 2778–2791 (2014).

    Article  Google Scholar 

  28. Jost, D., Vaillant, C. & Meister, P. Coupling 1D modifications and 3D nuclear organization: data, models and function. Curr. Opin. Cell Biol. 44, 20–27 (2017).

    Article  CAS  Google Scholar 

  29. Doyle, B., Fudenberg, G., Imakaev, M. & Mirny, L.A. Chromatin loops as allosteric modulators of enhancer-promoter interactions. PLoS Comput. Biol. 10, e1003867 (2014).

    Article  Google Scholar 

  30. Eastman, P. et al. OpenMM 4: A reusable, extensible, hardware independent library for high performance molecular simulation. J. Chem. Theory Comput. 9, 461–469 (2013).

    Article  CAS  Google Scholar 

  31. Eastman, P. et al. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. Preprint at http://biorxiv.org/content/early/2016/12/06/091801 (2016).

  32. Hofmann, A. & Heermann, D.W. The role of loops on the order of eukaryotes and prokaryotes. FEBS Lett. 589 20 Pt A, 2958–2965 (2015).

    Article  CAS  Google Scholar 

  33. Gavrilov, A.A. et al. Disclosure of a structural milieu for the proximity ligation reveals the elusive nature of an active chromatin hub. Nucleic Acids Res. 41, 3563–3575 (2013).

    Article  CAS  Google Scholar 

  34. Belmont, A.S. Large-scale chromatin organization: the good, the surprising, and the still perplexing. Curr. Opin. Cell Biol. 26, 69–78 (2014).

    Article  CAS  Google Scholar 

  35. Nagano, T. et al. Comparison of Hi-C results using in-solution versus in-nucleus ligation. Genome Biol. 16, 175 (2015).

    Article  Google Scholar 

  36. Lajoie, B.R., Dekker, J. & Kaplan, N. The Hitchhiker's guide to Hi-C analysis: practical guidelines. Methods 72, 65–75 (2015).

    Article  CAS  Google Scholar 

  37. Hsieh, T.S., Fudenberg, G., Goloborodko, A. & Rando, O.J. Micro-C XL: assaying chromosome conformation from the nucleosome to the entire genome. Nat. Methods 13, 1009–1011 (2016).

    Article  CAS  Google Scholar 

  38. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    Article  CAS  Google Scholar 

  39. Nichols, M.H. & Corces, V.G. A CTCF code for 3D genome architecture. Cell 162, 703–705 (2015).

    Article  CAS  Google Scholar 

  40. Sanborn, A.L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci. USA 112, E6456–E6465 (2015).

    Article  CAS  Google Scholar 

  41. Hansen, A.S., Pustova, I., Cattoglio, C., Tjian, R. & Darzacq, X. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. eLife http://dx.doi.org/10.7554/eLife.25776 (2017).

  42. Nora, E.P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 (2017).

    Article  CAS  Google Scholar 

  43. Barrington, C., Finn, R. & Hadjur, S. Cohesin biology meets the loop extrusion model. Chromosom. Res. 25, 51–60 (2017).

    Article  CAS  Google Scholar 

  44. Schwarzer, W. et al. Two independent modes of chromosome organization are revealed by cohesin removal. Preprint at http://biorxiv.org/content/early/2016/12/15/094185 (2016).

  45. Brackley, C.A. et al. Non-equilibrium chromosome looping via molecular slip-links. Preprint at https://arxiv.org/abs/1612.07256 (2016).

  46. Goloborodko, A., Marko, J.F. & Mirny, L.A. Chromosome compaction by active loop extrusion. Biophys. J. 110, 2162–2168 (2016).

    Article  CAS  Google Scholar 

  47. Imakaev, M.V., Tchourine, K.M., Nechaev, S.K. & Mirny, L.A. Effects of topological constraints on globular polymers. Soft Matter 11, 665–671 (2015).

    Article  CAS  Google Scholar 

  48. Halverson, J.D., Smrek, J., Kremer, K. & Grosberg, A.Y. From a melt of rings to chromosome territories: the role of topological constraints in genome folding. Rep. Prog. Phys. 77, 022601 (2014).

    Article  Google Scholar 

  49. Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999–1003 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Goloborodko for thoughtful comments regarding the statistical mechanics analogy of re-weighting loop conformations, G. Nir for helpful discussions regarding imaging, and anonymous reviewers for thoughtful and detailed feedback. The authors also thank J. Dekker and other members of the UMass–MIT Center for 3D Structure and Physics of the Genome for helpful feedback. Finally, the authors thank L. Mirny for comments on earlier drafts of this paper and for supporting their independent work. This work was supported by NSF 1504942 Physics of Chromosomes (PI: L. Mirny) and U54 DK107980 3D Structure and Physics of the Genome (PIs: J. Dekker and L. Mirny). During revisions, G.F. was supported by the San Simeon Fund (PI: K. Pollard).

Author information

Authors and Affiliations

Authors

Contributions

G.F. and M.I. jointly conceived of the study, performed analyses, and wrote the manuscript, and are listed in alphabetical order on the first page.

Corresponding authors

Correspondence to Geoffrey Fudenberg or Maxim Imakaev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–3 and Supplementary Note (PDF 5037 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fudenberg, G., Imakaev, M. FISH-ing for captured contacts: towards reconciling FISH and 3C. Nat Methods 14, 673–678 (2017). https://doi.org/10.1038/nmeth.4329

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.4329

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research