Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

QuaNCAT: quantitating proteome dynamics in primary cells

Abstract

Here we demonstrate quantitation of stimuli-induced proteome dynamics in primary cells by combining the power of bio-orthogonal noncanonical amino acid tagging (BONCAT) and stable-isotope labeling of amino acids in cell culture (SILAC). In conjunction with nanoscale liquid chromatography–tandem mass spectrometry (nanoLC-MS/MS), quantitative noncanonical amino acid tagging (QuaNCAT) allowed us to monitor the early expression changes of >600 proteins in primary resting T cells subjected to activation stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic QuaNCAT workflow.
Figure 2: Global changes of protein expression in primary human CD4+ T cells after 2-h and 4-h activation.
Figure 3: Interaction network of differentially expressed proteins after activation of primary T cells for 2 h and 4 h.

Similar content being viewed by others

References

  1. Ghazalpour, A. et al. PLoS Genet. 7, e1001393 (2011).

    Article  CAS  Google Scholar 

  2. Foss, E.J. et al. Nat. Genet. 39, 1369–1375 (2007).

    Article  CAS  Google Scholar 

  3. Rogers, S. et al. Bioinformatics 24, 2894–2900 (2008).

    Article  CAS  Google Scholar 

  4. Schwanhausser, B. et al. Nature 473, 337–342 (2011).

    Article  Google Scholar 

  5. Mann, M. Nat. Rev. Mol. Cell Biol. 7, 952–958 (2006).

    Article  CAS  Google Scholar 

  6. Geiger, T. et al. Nat. Protoc. 6, 147–157 (2011).

    Article  CAS  Google Scholar 

  7. Schwanhausser, B., Gossen, M., Dittmar, G. & Selbach, M. Proteomics 9, 205–209 (2009).

    Article  Google Scholar 

  8. Dieterich, D.C., Link, A.J., Graumann, J., Tirrell, D.A. & Schuman, E.M. Proc. Natl. Acad. Sci. USA 103, 9482–9487 (2006).

    Article  CAS  Google Scholar 

  9. Dieterich, D.C. et al. Nat. Protoc. 2, 532–540 (2007).

    Article  Google Scholar 

  10. Van Kasteren, S.I., Kramer, H.B., Gamblin, D.P. & Davis, B.G. Nat. Protoc. 2, 3185–3194 (2007).

    Article  CAS  Google Scholar 

  11. van Kasteren, S.I. et al. Nature 446, 1105–1109 (2007).

    Article  CAS  Google Scholar 

  12. Szychowski, J. et al. J. Am. Chem. Soc. 132, 18351–18360 (2010).

    Article  CAS  Google Scholar 

  13. Cox, J. & Mann, M. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  14. Smyth, G.K. in Bioinformatics and Computational Biology Solutions using R and Bioconductor (eds., Gentleman, R., Dudoit, S., Irizarry, R. & Huber, W.) 397–420 (Springer, New York, 2005).

  15. Diehn, M. et al. Proc. Natl. Acad. Sci. USA 99, 11796–11801 (2002).

    Article  CAS  Google Scholar 

  16. Eichelbaum, K., Winter, M., Diaz, M.B., Herzig, S. & Krijgsveld, J. Nat. Biotechnol. 30, 984–990 (2012).

    Article  CAS  Google Scholar 

  17. The UniProt Consortium. Nucleic Acids Res. 40, D71–D75 (2012).

  18. Cox, J. et al. J. Proteome Res. 11, 1794–1805 (2011).

    Article  Google Scholar 

  19. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  Google Scholar 

  20. Ihaka, R. & Gentleman, R.R. J. Comput. Graph. Statist. 5, 299–314 (1996).

    Google Scholar 

  21. Carrillo, B., Yanofsky, C., Laboissiere, S., Nadon, R. & Kearney, R.E. Bioinformatics 26, 98–103 (2010).

    Article  CAS  Google Scholar 

  22. Smyth, G.K. & Speed, T.P. Methods 31, 265–273 (2003).

    Article  CAS  Google Scholar 

  23. Smyth, G.K. Stat. Appl. Genet. Mol. Biol. 3, 3 (2004).

    Article  Google Scholar 

  24. Benjamini, Y. & Hochberg, Y. J. R. Stat. Soc., B 57, 289–300 (1995).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Wellcome Trust grant WT094296MA and EU-FP7 'Sybilla' number 201106 to O.A.; D.C.D. was supported by a Deutsche Forschungsgemeinschaft Emmy Noether grant DI1512/1-1. B.G.D. and O.A. are supported by Royal Society Wolfson Research Merit awards. We thank P. Charles, S. Taylor and E. Giannoulatou for advice on the use of bioinformatics and statistics software, W. Paster and K. Nika for helpful suggestions and for critical feedback on the manuscript, and M. Selbach for helpful suggestions. V.G. was supported by a Ph.D. fellowship from the Biotechnology and Biological Sciences Research Council, O.B. by a Marie Curie Intra European Fellowship, B.B. by a Rhodes scholarship. This paper is dedicated to Jamie.

Author information

Authors and Affiliations

Authors

Contributions

A.J.M.H., B.T., D.C.T., V.G. and O.A. initially conceived the QuaNCAT strategy. A.J.M.H., V.G., K.K., G.E., B.T., D.C.T., O.B., B.B., B.G.D. and O.A. designed and optimized the QuaNCAT procedure. B.B. and O.B. synthesized reagents for the CuAAC reaction and associated cell labeling; D.C.D. provided the cleavable tag and an improved protocol for affinity purification; A.J.M.H., V.G., K.K. and G.E. performed cell stimulation, metabolic labeling, CuAAC reactions in T cell extracts, protein affinity purification; optimized CuAAC protocol was initially performed by B.B. and O.B. on A.J.M.H.'s initial cell extracts; K.K., G.E., B.M.K. and O.A. performed radioactive labeling; K.K. performed flow cytometry analysis. A.J.M.H., V.G., K.K., G.E. and B.T. carried out mass spectrometry experiments and data analysis; A.J.M.H., V.G., K.K., G.E., B.T., B.B., B.G.D. and O.A. wrote the manuscript.

Corresponding authors

Correspondence to Benjamin G Davis or Oreste Acuto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1, Supplementary Note (PDF 2760 kb)

Supplementary Table 1

List of data set 1. (XLSX 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howden, A., Geoghegan, V., Katsch, K. et al. QuaNCAT: quantitating proteome dynamics in primary cells. Nat Methods 10, 343–346 (2013). https://doi.org/10.1038/nmeth.2401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2401

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing