Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Fast, single-molecule localization that achieves theoretically minimum uncertainty

Abstract

We describe an iterative algorithm that converges to the maximum likelihood estimate of the position and intensity of a single fluorophore. Our technique efficiently computes and achieves the Cramér-Rao lower bound, an essential tool for parameter estimation. An implementation of the algorithm on graphics processing unit hardware achieved more than 105 combined fits and Cramér-Rao lower bound calculations per second, enabling real-time data analysis for super-resolution imaging and other applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Performance comparison on simulated data.
Figure 2: Basic concept of single-molecule localization via GPU implementation.

Similar content being viewed by others

References

  1. van den Bos, A. Parameter Estimation for Scientists and Engineers (Wiley & Sons, 2007).

  2. Betzig, E. et al. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  3. Bates, M., Huang, B., Dempsey, G.T. & Zhuang, X. Science 317, 1749–1753 (2007).

    Article  CAS  Google Scholar 

  4. Egner, A. et al. Biophys. J. 93, 3285–3290 (2007).

    Article  CAS  Google Scholar 

  5. Hess, S.T., Girirajan, T.P.K. & Mason, M.D. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  Google Scholar 

  6. Lidke, K.A., Rieger, B., Jovin, T.M. & Heintzmann, R. Opt. Express 13, 7052–7062 (2005).

    Article  Google Scholar 

  7. Cheezum, M.K., Walker, W.F. & Guilford, W.H. Biophys. J. 81, 2378–2388 (2001).

    Article  CAS  Google Scholar 

  8. Ober, R.J., Ram, S. & Ward, E.S. Biophys. J. 86, 1185–1200 (2004).

    Article  CAS  Google Scholar 

  9. Abraham, A.V. et al. Opt. Express 17, 23352–23373 (2009).

    Article  CAS  Google Scholar 

  10. Huang, B., Wang, W., Bates, M. & Zhuang, X. Science 319, 810–813 (2008).

    Article  CAS  Google Scholar 

  11. Zhang, B., Zerubia, J. & Olivo-Marin, J.C. Appl. Opt. 46, 1819–1829 (2007).

    Article  Google Scholar 

  12. Thompson, R.E., Larson, D.R. & Webb, W.W. Biophys. J. 82, 2775–2783 (2002).

    Article  CAS  Google Scholar 

  13. Aguet, F., Van De Ville, D. & Unser, M. Opt. Express 13, 10503–10522 (2005).

    Article  Google Scholar 

  14. Enderlein, J., Toprak, E. & Selvin, P. Opt. Express 14, 8112–8120 (2006).

    Article  Google Scholar 

  15. Press, W., Teukolsky, S., Vetterling, W. & Flannery, B. Numerical Recipes in C: The Art of Scientific Computing 2nd edn. (Cambridge University Press, Cambridge, UK, 1992).

  16. Rasnik, I., McKinney, S.A. & Ha, T. Nat. Methods 3, 891–893 (2006).

    Article  CAS  Google Scholar 

  17. Lidke, K.A., Rieger, B., Lidke, D.S. & Jovin, T.M. IEEE Trans. Image Process. 14, 1237–1245 (2005).

    Article  Google Scholar 

  18. Andrews, N.L. et al. Nat. Cell Biol. 10, 955–963 (2008).

    Article  CAS  Google Scholar 

  19. Young, I. et al. in Proceedings of the 8th Scandinavian Conference on Image Analysis (eds., Høgda, K.A., Braathen, B. & Heia, K.) 493–498 (Norwegian Society for Image Processing and Pattern Recognition, Tromsø, Norway, 1993).

  20. Betzig, E. et al. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  21. Egner, A. et al. Biophys. J. 93, 3285–3290 (2007).

    Article  CAS  Google Scholar 

  22. Rust, M.J., Bates, M. & Zhuang, X.W. Nat. Methods 3, 793–795 (2006).

    Article  CAS  Google Scholar 

  23. Bates, M., Huang, B., Dempsey, G.T. & Zhuang, X. Science 317, 1749–1753 (2007).

    Article  CAS  Google Scholar 

  24. Small, A. Biophys. J. 96, L16–L18 (2009).

    Article  CAS  Google Scholar 

  25. Wolter, S. et al. J. Microsc. 237, 12–22 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the American Cancer Society (IRG-92-024) and the US National Institutes of Health (1P50GM085273-01A1). We thank M. Malik and I.T. Young for reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.S.S. and K.A.L. worked out the algorithm and implementation; N.J. and K.A.L. performed the experiments; and B.R. and K.A.L. designed the research and wrote the paper.

Corresponding author

Correspondence to Keith A Lidke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Table 1, Supplementary Note 1 and Supplementary Data (PDF 363 kb)

Supplementary Software 1

Example MATLAB codes (ZIP 502 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, C., Joseph, N., Rieger, B. et al. Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7, 373–375 (2010). https://doi.org/10.1038/nmeth.1449

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1449

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing