Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Visualization of multiple alignments, phylogenies and gene family evolution

Abstract

Software for visualizing sequence alignments and trees are essential tools for life scientists. In this review, we describe the major features and capabilities of a selection of stand-alone and web-based applications useful when investigating the function and evolution of a gene family. These range from simple viewers, to systems that provide sophisticated editing and analysis functions. We conclude with a discussion of the challenges that these tools now face due to the flood of next generation sequence data and the increasingly complex network of bioinformatics information sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alignment topologies.
Figure 2: Multiple alignment visualization.
Figure 3: Examples of automatically generated summary annotation for an alignment generated by MSA visualization tools.
Figure 4: Euclidean tree layouts.

Similar content being viewed by others

References

  1. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Johnson, M. et al. NCBI BLAST: a better web interface. Nucleic Acids Res. 36, W5–W9 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lu, G. & Moriyama, E.N. Vector NTI, a balanced all-in-one sequence analysis suite. Brief. Bioinform. 5, 378–388 (2004).

    CAS  PubMed  Google Scholar 

  4. Thompson, J.D., Gibson, T.J. & Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinformatics 2, 2.3.1–2.3.22 (2002).

    Google Scholar 

  5. Notredame, C., Higgins, D.G. & Heringa, J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).

    CAS  PubMed  Google Scholar 

  6. Edgar, R.C. & Batzoglou, S. Multiple sequence alignment. Curr. Opin. Struct. Biol. 16, 368–373 (2006). A comprehensive review of the approaches available for the alignment of many sequences.

    CAS  PubMed  Google Scholar 

  7. Raghava, G.P., Searle, S.M., Audley, P.C., Barber, J.D. & Barton, G.J. OXBench: a benchmark for evaluation of protein multiple sequence alignment accuracy. BMC Bioinformatics 4, 47 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gouet, P., Robert, X. & Courcelle, E. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31, 3320–3323 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Barton, G.J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 6, 37–40 (1993).

    CAS  PubMed  Google Scholar 

  10. Goodstadt, L. & Ponting, C.P. CHROMA: consensus-based colouring of multiple alignments for publication. Bioinformatics 17, 845–846 (2001).

    CAS  PubMed  Google Scholar 

  11. Barrio, A.M., Lagercrantz, E., Sperber, G.O., Blomberg, J. & Bongcam-Rudloff, E. Annotation and visualization of endogenous retroviral sequences using the Distributed Annotation System (DAS) and eBioX. BMC Bioinformatics 10 (suppl. 6), S18 (2009).

    PubMed  Google Scholar 

  12. Finn, R.D. et al. The Pfam protein families database. Nucleic Acids Res. 36, D281–D288 (2008).

    CAS  PubMed  Google Scholar 

  13. Lin, K., May, A.C. & Taylor, W.R. Amino acid encoding schemes from protein structure alignments: multi-dimensional vectors to describe residue types. J. Theor. Biol. 216, 361–365 (2002). The empirical analysis underlying the 'Taylor' amino acid color scheme; this builds on Taylor's earlier work (1986) concerning approaches for the classification of amino acids.

    CAS  PubMed  Google Scholar 

  14. Valdar, W.S. Scoring residue conservation. Proteins 48, 227–241 (2002).

    CAS  PubMed  Google Scholar 

  15. Chakrabarti, S. & Lanczycki, C.J. Analysis and prediction of functionally important sites in proteins. Protein Sci. 16, 4–13 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schneider, T.D. & Stephens, R.M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schneider, T.D. Twenty years of Delila and molecular information theory: the Altenberg-Austin Workshop in Theoretical Biology biological information, beyond metaphor: causality, explanation, and unification Altenberg, Austria, 11–14 July 2002. Biol. Theory 1, 250–260 (2006).

    PubMed  PubMed Central  Google Scholar 

  18. Caffrey, D.R. et al. PFAAT version 2.0: a tool for editing, annotating, and analyzing multiple sequence alignments. BMC Bioinformatics 8, 381 (2007).

    PubMed  PubMed Central  Google Scholar 

  19. Rastogi, P.A. MacVector. Integrated sequence analysis for the Macintosh. Methods Mol. Biol. 132, 47–69 (2000).

    CAS  PubMed  Google Scholar 

  20. Gille, C. & Robinson, P.N. HotSwap for bioinformatics: a STRAP tutorial. BMC Bioinformatics 7, 64 (2006).

    PubMed  PubMed Central  Google Scholar 

  21. Bailey, T.L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Landan, G. & Graur, D. Characterization of pairwise and multiple sequence alignment errors. Gene 441, 141–147 (2009). To our knowledge, this is the first detailed analysis of the errors that may be introduced by tree based sequence alignment algorithms.

    CAS  PubMed  Google Scholar 

  23. Galtier, N., Gouy, M. & Gautier, C. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 12, 543–548 (1996).

    CAS  PubMed  Google Scholar 

  24. Lord, P.W., Selley, J.N. & Attwood, T.K. CINEMA-MX: a modular multiple alignment editor. Bioinformatics 18, 1402–1403 (2002).

    CAS  PubMed  Google Scholar 

  25. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M. & Barton, G.J. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Margulies, E.H. & Birney, E. Approaches to comparative sequence analysis: towards a functional view of vertebrate genomes. Nat. Rev. Genet. 9, 303–313 (2008).

    CAS  PubMed  Google Scholar 

  27. Hulo, N. et al. The 20 years of PROSITE. Nucleic Acids Res. 36, D245–D249 (2008).

    CAS  PubMed  Google Scholar 

  28. Wingender, E. The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Brief. Bioinform. 9, 326–332 (2008).

    CAS  PubMed  Google Scholar 

  29. Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006).

    CAS  PubMed  Google Scholar 

  30. Zvelebil, M.J., Barton, G.J., Taylor, W.R. & Sternberg, M.J. Prediction of protein secondary structure and active sites using the alignment of homologous sequences. J. Mol. Biol. 195, 957–961 (1987).

    CAS  PubMed  Google Scholar 

  31. Chakrabarti, S. & Panchenko, A.R. Ensemble approach to predict specificity determinants: benchmarking and validation. BMC Bioinformatics 10, 207 (2009).

    PubMed  PubMed Central  Google Scholar 

  32. Horner, D.S., Pirovano, W. & Pesole, G. Correlated substitution analysis and the prediction of amino acid structural contacts. Brief. Bioinform. 9, 46–56 (2008).

    CAS  PubMed  Google Scholar 

  33. Casari, G., Sander, C. & Valencia, A. A method to predict functional residues in proteins. Nat. Struct. Biol. 2, 171–178 (1995).

    CAS  PubMed  Google Scholar 

  34. Schwarz, R. et al. Detecting species-site dependencies in large multiple sequence alignments. Nucleic Acids Res. 37, 5959–5968 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Joachimiak, M.P. & Cohen, F.E. JEvTrace: refinement and variations of the evolutionary trace in JAVA. Genome Biol. 3, RESEARCH0077 (2002).

    PubMed  PubMed Central  Google Scholar 

  36. Goldenberg, O., Erez, E., Nimrod, G. & Ben-Tal, N. The ConSurf-DB: pre-calculated evolutionary conservation profiles of protein structures. Nucleic Acids Res. 37, D323–D327 (2009).

    CAS  PubMed  Google Scholar 

  37. Li, W. & Godzik, A. VISSA: a program to visualize structural features from structure sequence alignment. Bioinformatics 22, 887–888 (2006).

    CAS  PubMed  Google Scholar 

  38. Brown, J.W. et al. The RNA structure alignment ontology. RNA 15, 1623–1631 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, K., Durand, D. & Farach-Colton, M. NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7, 429–447 (2000).

    CAS  PubMed  Google Scholar 

  40. Vernot, B., Stolzer, M., Goldman, A. & Durand, D. Reconciliation with non-binary species trees. J. Comput. Biol. 15, 981–1006 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bingham, J. & Sudarsanam, S. Visualizing large hierarchical clusters in hyperbolic space. Bioinformatics 16, 660–661 (2000).

    CAS  PubMed  Google Scholar 

  42. Hughes, T., Hyun, Y. & Liberles, D.A. Visualising very large phylogenetic trees in three dimensional hyperbolic space. BMC Bioinformatics 5, 48 (2004).

    PubMed  PubMed Central  Google Scholar 

  43. Livingstone, C.D. & Barton, G.J. Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation. Comput. Appl. Biosci. 9, 745–756 (1993).

    CAS  PubMed  Google Scholar 

  44. Sankararaman, S. & Sjolander, K. INTREPID–INformation-theoretic TREe traversal for Protein functional site IDentification. Bioinformatics 24, 2445–2452 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Engelen, S., Trojan, L.A., Sacquin-Mora, S., Lavery, R. & Carbone, A. Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling. PLoS Comput. Biol. 5, e1000267 (2009).

    PubMed  PubMed Central  Google Scholar 

  46. Chevenet, F., Brun, C., Banuls, A.L., Jacq, B. & Christen, R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7, 439 (2006).

    PubMed  PubMed Central  Google Scholar 

  47. Santamaría, R. & Theron, R. Treevolution: visual analysis of phylogenetic trees. Bioinformatics 25, 1970–1971 (2009).

    PubMed  Google Scholar 

  48. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).

    CAS  PubMed  Google Scholar 

  49. Müller, J. & Müller, K. TreeGraph: automated drawing of complex tree figures using an extensible tree description format. Mol. Ecol. Notes 4, 786–788 (2004).

    Google Scholar 

  50. Pettifer, S. et al. Visualising biological data: a semantic approach to tool and database integration. BMC Bioinformatics 10 (supp. 6), S19 (2009).

    PubMed  PubMed Central  Google Scholar 

  51. Raphael, B., Zhi, D., Tang, H. & Pevzner, P. A novel method for multiple alignment of sequences with repeated and shuffled elements. Genome Res. 14, 2336–2346 (2004). Introduces the partially ordered alignment algorithm and demonstrates how this graph based alignment visualization provides a more compact view of complex alignments.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009). Describes the CIRCOS approach for visualization of comparative genomic data, which can provide a more compact view of large multiple sequence alignments.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. UniProt Consortium. The Universal Protein Resource (UniProt) 2009. Nucleic Acids Res. 37, D169–D174 (2009).

  54. Berman, H.M. et al. The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 63, 751–759 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Taylor, W.R. The classification of amino acid conservation. J. Theor. Biol. 119, 205–218 (1986).

    CAS  PubMed  Google Scholar 

  56. Mirny, L.A. & Shakhnovich, E.I. Universally conserved positions in protein folds: reading evolutionary signals about stability, folding kinetics and function. J. Mol. Biol. 291, 177–196 (1999).

    CAS  PubMed  Google Scholar 

  57. Schuster-Böckler, B. & Bateman, A. Visualizing profile-profile alignment: pairwise HMM logos. Bioinformatics 21, 2912–2913 (2005).

    PubMed  Google Scholar 

  58. Eddy, S.R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).

    CAS  PubMed  Google Scholar 

  59. Seibel, P.N., Muller, T., Dandekar, T. & Wolf, M. Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE. BMC Res. Notes 1, 91 (2008).

    PubMed  PubMed Central  Google Scholar 

  60. Wilm, A., Linnenbrink, K. & Steger, G. ConStruct: improved construction of RNA consensus structures. BMC Bioinformatics 9, 219 (2008).

    PubMed  PubMed Central  Google Scholar 

  61. Jossinet, F. & Westhof, E. Sequence to Structure (S2S): display, manipulate and interconnect RNA data from sequence to structure. Bioinformatics 21, 3320–3321 (2005).

    CAS  PubMed  Google Scholar 

  62. Andersen, E.S. et al. Semiautomated improvement of RNA alignments. RNA 13, 1850–1859 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gille, C. Structural interpretation of mutations and SNPs using STRAP-NT. Protein Sci. 15, 208–210 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mizuguchi, K., Deane, C.M., Blundell, T.L., Johnson, M.S. & Overington, J.P. JOY: protein sequence-structure representation and analysis. Bioinformatics 14, 617–623 (1998).

    CAS  PubMed  Google Scholar 

  65. Zmasek, C.M. & Eddy, S.R. ATV: display and manipulation of annotated phylogenetic trees. Bioinformatics 17, 383–384 (2001).

    CAS  PubMed  Google Scholar 

  66. Archer, J. & Robertson, D.L. CTree: comparison of clusters between phylogenetic trees made easy. Bioinformatics 23, 2952–2953 (2007).

    CAS  PubMed  Google Scholar 

  67. Huson, D.H. et al. Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8, 460 (2007).

    PubMed  PubMed Central  Google Scholar 

  68. Perrière, G. & Gouy, M. WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78, 364–369 (1996).

    PubMed  Google Scholar 

  69. Hillis, D.M., Heath, T.A. & St. John, K. Analysis and visualization of tree space. Syst. Biol. 54, 471–482 (2005). A demonstration of different kinds of tree visualization, and an examination of how spatial techniques such as multidimensional scaling can be used to visualize and compare ensembles of trees.

    PubMed  Google Scholar 

  70. Page, R.D. TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357–358 (1996).

    CAS  PubMed  Google Scholar 

  71. Munzner, T., Guimbretiere, F., Tasiran, S., Zhang, L. & Zhou, Y. TreeJuxtaposer: scalable tree comparison using focus+context with guaranteed visibility. ACM Trans. Graph. 22, 453–462 (2003).

    Google Scholar 

  72. Kumar, S., Nei, M., Dudley, J. & Tamura, K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9, 299–306 (2008).

    CAS  PubMed  Google Scholar 

  73. Huson, D.H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006). Describes the phylogenetic network visualization approach implemented in SplitsTree4, where evolutionary distance and bootstrap support are represented in one network structure, rather than an annotated tree.

    CAS  PubMed  Google Scholar 

  74. Milne, I. et al. TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics 25, 126–127 (2009).

    CAS  PubMed  Google Scholar 

  75. Jordan, G.E. & Piel, W.H. PhyloWidget: web-based visualizations for the tree of life. Bioinformatics 24, 1641–1642 (2008).

    CAS  PubMed  Google Scholar 

  76. Prlić, A. et al. Integrating sequence and structural biology with DAS. BMC Bioinformatics 8, 333 (2007).

    PubMed  PubMed Central  Google Scholar 

  77. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Thompson, J.D. et al. MACSIMS: multiple alignment of complete sequences information management system. BMC Bioinformatics 7, 318 (2006).

    PubMed  PubMed Central  Google Scholar 

  79. Barrell, D. et al. The GOA database in 2009–an integrated Gene Ontology Annotation resource. Nucleic Acids Res. 37, D396–D403 (2009).

    CAS  PubMed  Google Scholar 

  80. The Gene Ontology's Reference Genome Project. A unified framework for functional annotation across species. PLoS Comput. Biol. 5, e1000431 (2009).

  81. Reeves, G.A. et al. The Protein Feature Ontology: a tool for the unification of protein feature annotations. Bioinformatics 24, 2767–2772 (2008).

    CAS  PubMed  Google Scholar 

  82. Eilbeck, K. et al. The Sequence Ontology: a tool for the unification of genome annotations. Genome Biol. 6, R44 (2005).

    PubMed  PubMed Central  Google Scholar 

  83. Sayers, E.W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 37, D5–D15 (2009).

    CAS  PubMed  Google Scholar 

  84. Holder, M. & Lewis, P.O. Phylogeny estimation: traditional and Bayesian approaches. Nat. Rev. Genet. 4, 275–284 (2003).

    CAS  PubMed  Google Scholar 

  85. Swofford, D.L., Olsen, G.J., Waddell, P.J. & Hillis, D.M. Phylogenetic inference. in Molecular Systematics (eds. Hillis, D.M., Moritz, C. & Mable, B.K.) 407–514 (Sinauer, Sunderland, Massachusetts, USA, 1996).

    Google Scholar 

  86. Felsenstein, J. Inferring Phylogenies (Sinauer, Sunderland, Massachusetts, USA, 2004).

    Google Scholar 

  87. Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981).

    CAS  PubMed  Google Scholar 

  88. Huelsenbeck, J.P., Ronquist, F., Nielsen, R. & Bollback, J.P. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2314 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.B.P. acknowledges the support of the ENFIN European Network of Excellence (contract LSHG-CT-2005-518254) awarded to G.J.B. Several tools were made available as prereleases to the authors for evaluation purposes, and we thank the individuals and companies who obliged our requests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B Procter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 2274 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Procter, J., Thompson, J., Letunic, I. et al. Visualization of multiple alignments, phylogenies and gene family evolution. Nat Methods 7 (Suppl 3), S16–S25 (2010). https://doi.org/10.1038/nmeth.1434

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1434

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics