Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Detection of heteromerization of more than two proteins by sequential BRET-FRET

Abstract

Identification of higher-order oligomers in the plasma membrane is essential to decode the properties of molecular networks controlling intercellular communication. We combined bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) in a technique called sequential BRET-FRET (SRET) that permits identification of heteromers formed by three different proteins. In SRET, the oxidation of a Renilla luciferase (Rluc) substrate by an Rluc fusion protein triggers acceptor excitation of a second fusion protein by BRET and subsequent FRET to a third fusion protein. We describe two variations of SRET that use different Rluc substrates with appropriately paired acceptor fluorescent proteins. Using SRET, we identified complexes of cannabinoid CB1, dopamine D2 and adenosine A2A receptors in living cells. SRET is an invaluable technique to identify heteromeric complexes of more than two neurotransmitter receptors, which will allow us to better understand how signals are integrated at the molecular level.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of SRET2 and SRET1.
Figure 2: SRET in living cells.
Figure 3: FRET for the D2R-GFP2 and CB1R-YFP pair by sensitized emission in living cells.
Figure 4: SRET for A2AR, D2R and CB1R in living cells.

Similar content being viewed by others

References

  1. Gutkind, J.S. The pathways connecting G protein–coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J. Biol. Chem. 273, 1839–1842 (1998).

    Article  CAS  Google Scholar 

  2. Pierce, K.L., Luttrell, L.M. & Lefkowitz, R.J. New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20, 1532–1539 (2001).

    Article  CAS  Google Scholar 

  3. Xia, Y. et al. Analyzing cellular biochemistry in terms of molecular networks. Annu. Rev. Biochem. 73, 1051–1087 (2004).

    Article  Google Scholar 

  4. Agnati, L.F., Ferré, S., Lluis, C., Franco, R. & Fuxe, K. Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol. Rev. 55, 509–550 (2003).

    Article  CAS  Google Scholar 

  5. Franco, R. et al. Regulation of heptaspanning-membrane-receptor function by dimerization and clustering. Trends Biochem. Sci. 28, 238–243 (2003).

    Article  CAS  Google Scholar 

  6. Bockaert, J., Marin, P., Dumuis, A. & Fagni, L. The 'magic tail' of G protein–coupled receptors: an anchorage for functional protein networks. FEBS Lett. 546, 65–72 (2003).

    Article  CAS  Google Scholar 

  7. Terrillon, S. & Bouvier, M. Roles of G-protein-coupled receptor dimerization. EMBO Rep. 5, 30–34 (2004).

    Article  CAS  Google Scholar 

  8. Hall, R.A. & Lefkowitz, R.J. Regulation of G protein–coupled receptor signaling by scaffold proteins. Circ. Res. 91, 672–680 (2002).

    Article  CAS  Google Scholar 

  9. Miller, W.E. & Lefkowitz, R.J. Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr. Opin. Cell Biol. 13, 139–145 (2001).

    Article  CAS  Google Scholar 

  10. Angers, S. et al. Detection of beta2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl. Acad. Sci. USA 97, 3684–3689 (2000).

    CAS  PubMed  Google Scholar 

  11. Overton, M.C. & Blumer, K.J.G. Protein coupled receptors function as oligomers in vivo. Curr. Biol. 10, 341–344 (2000).

    Article  CAS  Google Scholar 

  12. Bouvier, M. Oligomerization of G protein–coupled transmitter receptors. Nat. Rev. Neurosci. 2, 274–286 (2001).

    Article  CAS  Google Scholar 

  13. Milligan, G. & Bouvier, M. Methods to monitor the quaternary structure of G protein–coupled receptors. FEBS J. 272, 2914–2925 (2005).

    Article  CAS  Google Scholar 

  14. Pfleger, K.D. & Eidne, K.A. Monitoring the formation of dynamic G protein–coupled receptor-protein complexes in living cells. Biochem. J. 385, 625–637 (2005).

    Article  CAS  Google Scholar 

  15. Pfleger, K.D. & Eidne, K.A. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer. Nat. Methods 3, 165–174 (2006).

    Article  CAS  Google Scholar 

  16. Pfleger, K.D. et al. Extended bioluminescence resonance energy transfer (eBRET) for monitoring prolonged protein-protein interactions in live cells. Cell. Signal. 18, 1664–1670 (2006).

    Article  CAS  Google Scholar 

  17. James, J.R. et al. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat. Methods 3, 1001–1006 (2006).

    Article  CAS  Google Scholar 

  18. Zimmermann, T., Rietdorf, J., Girod, A., Georget, V. & Pepperkok, R. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett. 531, 245–249 (2002).

    Article  CAS  Google Scholar 

  19. Peleg, S. et al. G(alpha)(i) controls the gating of the G protein–activated K+ channel, GIRK. Neuron 33, 87–99 (2002).

    Article  CAS  Google Scholar 

  20. Bünemann, M., Frank, M. & Lohse, M.J. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl. Acad. Sci. USA 100, 16077–16082 (2003).

    Article  Google Scholar 

  21. Galés, C. et al. Real-time monitoring of receptor and G-protein interactions in living cells. Nat. Methods 2, 177–184 (2005).

    Article  Google Scholar 

  22. Evanko, D.S. et al. Loss of association between activated Gαq and Gβγ disrupts receptor-dependent and receptor-independent signaling. Cell. Signal. 17, 1218–1228 (2005).

    Article  CAS  Google Scholar 

  23. Frank, M. et al. G protein activation without subunit dissociation depends on a Gi-specific region. J. Biol. Chem. 280, 24584–24590 (2005).

    Article  CAS  Google Scholar 

  24. Adjobo-Hermans, M.J.W., Goedhart, J. & Gadella, T.W.J., Jr. Plant G protein heterotrimers require dual lipidation motifs of Gα and Gγ and do not dissociate upon activation. J. Cell Sci. 119, 5087–5097 (2006).

    Article  CAS  Google Scholar 

  25. Tang, W. et al. Gβγ inhibits Gα GTPase-activating proteins by inhibition of Gα−GTP binding during stimulation by receptor. J. Biol. Chem. 281, 4746–4753 (2006).

    Article  CAS  Google Scholar 

  26. Canals, M. et al. Adenosine A2A-dopamine D2 receptor-receptor heteromerization. Qualitative and quantitative assessment by fluorescence and bioluminescence resonance energy transfer. J. Biol. Chem. 278, 46741–46749 (2003).

    Article  CAS  Google Scholar 

  27. Ciruela, F. et al. Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope-epitope electrostatic interactions between adenosine A2A and dopamine D2 receptors. Anal. Chem. 76, 5354–5363 (2004).

    Article  CAS  Google Scholar 

  28. Carriba, P. et al. Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32, 2249–2259 (2007).

    Article  CAS  Google Scholar 

  29. Kearn, C.S., Blake-Palmer, K., Daniel, E., Mackie, K. & Glass, M. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol. Pharmacol. 67, 1697–1704 (2005).

    Article  CAS  Google Scholar 

  30. Prinz, A., Diskar, M. & Herberg, F.W. Application of bioluminescence resonance energy transfer (BRET) for biomolecular interaction studies. ChemBioChem 7, 1007–1012 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Spanish Ministry of Education and Science (SAF2005-00170 and SAF2006-05481), the Fundació La Marató de Televisió de Catalunya (060110) and from Intramural Funds of the US National Institute on Drug Abuse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Franco.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2, Supplementary Methods (PDF 977 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carriba, P., Navarro, G., Ciruela, F. et al. Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat Methods 5, 727–733 (2008). https://doi.org/10.1038/nmeth.1229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1229

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing