Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Assembling a lasing hybrid material with supramolecular polymers and nanocrystals

Abstract

The combination of bottom-up and top-down processes to organize nanophases in hybrid materials is a key strategy to create functional materials. We found that oxide and sulphide nanocrystals become spontaneously dispersed in organic media during the self-assembly of nanoribbon supramolecular polymers. These nanoribbon polymers form by self-assembly of dendron rodcoil molecules, which contain three molecular blocks with dendritic, rod-like, and coil-like architectures. In an electric field these supramolecular assemblies carrying bound nanocrystals migrate to the positive electrode in an etched channel and align in the field. In the system containing ZnO nanocrystals as the inorganic component, both phases are oriented in the hybrid material forming an ultraviolet lasing medium with a lower threshold relative to pure ZnO nanocrystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Strong dispersion of nanocrystals in DRC gels.
Figure 3: Schematic representation of ZnO nanocrystal dispersion from the bottom of organic solutions by nanoribbons formed by self-assembly of DRC molecules.
Figure 4: Electric fields unidirectionally orient DRC nanoribbons.
Figure 5: TEM reveals the orientation of DRC nanoribbons along the poling direction.
Figure 6
Figure 7: Ultraviolet emission from poled DRC–ZnO films with lower threshold.

Similar content being viewed by others

References

  1. Bawendi, M.G., Steigerwald, M.L. & Brus, L.E. The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu. Rev. Phys. Chem. 41, 477–496 (1990).

    Article  CAS  Google Scholar 

  2. Murray, C.B., Kagan, C.R. & Bawendi, M.G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995).

    Article  CAS  Google Scholar 

  3. Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  4. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  5. Duan, X., Huang, Y., Cui, Y., Wang, J. & Lieber, C.M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001).

    Article  CAS  Google Scholar 

  6. Huang, M.H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    Article  CAS  Google Scholar 

  7. Pan, Z.W., Dai, Z.R. & Wang, Z.L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001).

    Article  CAS  Google Scholar 

  8. Mirkin, C.A., Letsinger, R.L., Mucic, R.C. & Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  9. Alivisatos, A.P. et al. Organization of “nanocrystal molecules” using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  10. Ghadiri, M.R., Granja, J.R., Milligan, R.A., McRee, D.E. & Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324–327 (1993).

    Article  CAS  Google Scholar 

  11. Stupp, S.I. et al. Supramolecular materials: self-organized nanostructures. Science 276, 384–389 (1997).

    Article  CAS  Google Scholar 

  12. Zubarev, E.R., Pralle, M.U., Sone, E.D. & Stupp, S.I. Self-assembly of dendron rodcoil molecules into nanoribbons. J. Am. Chem. Soc. 123, 4105–4106 (2001).

    Article  CAS  Google Scholar 

  13. Hartgerink, J.D., Beniash, E. & Stupp, S.I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    Article  CAS  Google Scholar 

  14. Leon, J.W., Kawa, M. & Frechet, J.M.J. Isophthalate ester-terminated dendrimers: versatile nanoscopic building blocks with readily modifiable surface functionalities. J. Am. Chem. Soc. 118, 8847–8859 (1996).

    Article  CAS  Google Scholar 

  15. Hudson, S.D. et al. Direct visualization of individual cylindrical and spherical supramolecular dendrimers. Science 278, 449–452 (1997).

    Article  CAS  Google Scholar 

  16. Pralle, M.U. et al. Piezoelectricity in polar supramolecular materials. Angew. Chem. Int. Edn 39, 1486–1489 (2000).

    Article  CAS  Google Scholar 

  17. Schlittler, R.R. et al. Single crystals of single-walled carbon nanotubes formed by self-assembly. Science 292, 1136–1139 (2001).

    Article  CAS  Google Scholar 

  18. Casassa, E.Z., Sarquis, A.M. & Van Dyke, C.H. The gelation of polyvinyl alcohol with borax. J. Chem. Edu. 63, 57–60 (1986).

    Article  CAS  Google Scholar 

  19. Van De Pol, F.C.M. Thin-film ZnO - properties and applications. Am. Ceram. Soc. Bull. 69, 1959–1965 (1990).

    CAS  Google Scholar 

  20. Hawcroft, D.M. Electrophoresis The Basics (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  21. Hecht, E. & Zajac, A. Optics (Addison-Wesley, Massachusetts, 1974).

    Google Scholar 

  22. Sasanuma, M. Optical processes in ZnO. J. Phys. Condens. Matter 7, 10029–10036 (1995).

    Article  CAS  Google Scholar 

  23. Gorla, C.R. et al. Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition. J. Appl. Phys. 85, 2595–2602 (1999).

    Article  CAS  Google Scholar 

  24. Liang, W.Y. & Yoffe, A.D. Transmission spectra of ZnO single crystals. Phys. Rev. Lett. 20, 59–62 (1968).

    Article  CAS  Google Scholar 

  25. Keller, F.J., Gettys, W.E. & Skove, M.J. Physics Classical and Modern 2nd edn (McGraw-Hill, New York, 1993).

    Google Scholar 

  26. Cao, H., Xu, J.Y., Seelig, E.W. & Chang, R.P.H. Microlaser made of disordered media. Appl. Phys. Lett. 76, 2997–2999 (2000).

    Article  CAS  Google Scholar 

  27. Sun, Y., Ketterson, J.B. & Wong, G.K.L. Excitonic gain and stimulated ultraviolet emission in nanocrystalline zinc-oxide powder. Appl. Phys. Lett. 77, 2322–2324 (2000).

    Article  CAS  Google Scholar 

  28. Kawasaki, M. et al. Excitonic ultraviolet laser emission at room temperature from naturally made cavity in ZnO nanocrystal thin films. Mater. Sci. Eng. B 56, 239–245 (1998).

    Article  Google Scholar 

  29. Chen, Y., Bagnall, D. & Yao, T. ZnO as a novel photonic material for the UV region. Mater. Sci. Eng. B 75, 190–198 (2000).

    Article  Google Scholar 

  30. Look, D.C. Recent advances in ZnO materials and devices. Mater. Sci. Eng. B 80, 383–387 (2001).

    Article  Google Scholar 

  31. Thareja, R.K. & Mitra, A. Random laser action in ZnO. Appl. Phys. B 71, 181–184 (2000).

    Article  CAS  Google Scholar 

  32. Mitra, A. et al. Synthesis and characterization of ZnO thin films for UV laser. Appl. Surf. Sci. 174, 232–239 (2001).

    Article  CAS  Google Scholar 

  33. Cho, S. et al. Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn. Appl. Phys. Lett. 75, 2761–2763 (1999).

    Article  CAS  Google Scholar 

  34. Mitra, A. & Thareja, R.K. Photoluminescence and ultraviolet laser emission from nanocrystalline ZnO thin films. J. Appl. Phys. 89, 2025–2028 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is based on work supported by the US Department of Energy (DE-FG02-00ER45810) and the US Army Research Office (DAAG55-97-1-0126). Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the Department of Energy or the Army Research Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel I. Stupp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Beniash, E., Zubarev, E. et al. Assembling a lasing hybrid material with supramolecular polymers and nanocrystals. Nature Mater 2, 689–694 (2003). https://doi.org/10.1038/nmat983

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat983

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing