Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Switching of magnetization by nonlinear resonance studied in single nanoparticles

Abstract

Magnetization reversal in magnetic particles is one of the fundamental issues in magnetic data storage. Technological improvements require the understanding of dynamical magnetization reversal processes at nanosecond time scales1. New strategies are needed to overcome current limitations. For example, the problem of thermal stability of the magnetization state (superparamagnetic limit) can be pushed down to smaller particle sizes by increasing the magnetic anisotropy2. High fields are then needed to reverse the magnetization, which are difficult to achieve in current devices. Here we propose a new method to overcome this limitation. A constant applied field, well below the switching field, combined with a radio-frequency (RF) field pulse can reverse the magnetization of a nanoparticle. The efficiency of this method is demonstrated on a 20-nm-diameter cobalt particle by using the microSQUID (superconducting quantum interference device) technique3. Other applications of this method might be nucleation or depinning of domain walls.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The magnetization reversal by nonlinear resonance.
Figure 2: The Josephson junction (microbridge) of the microsuperconducting quantum interference device (SQUID), on which a 20-nm-diameter h.c.p. cobalt particle was placed.
Figure 3: Three-dimensional switching-field map of the 20-nm-diameter h.c.p. Co particle shown in Fig. 2a (particle A).
Figure 4: Field dependence of the switching field of the 20-nm-diameter Co particle (particle A in Fig. 2a).
Figure 5: Simulation of the field dependence of the switching field (dynamic Stoner–Wohlfarth astroid).

Similar content being viewed by others

References

  1. Hillebrands, B. & Ounadjela, K. (eds) Spin Dynamic in Confined Magnetic Structures. (Springer, Berlin, 2002).

    Book  Google Scholar 

  2. Sun, S., Murray, C.B., Weller, D., Folks, L. & Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 ( 2000).

    Article  CAS  Google Scholar 

  3. Wernsdorfer, W. Classical and quantum magnetization reversal studied in nanometer-sized particles and clusters. Adv. Chem. Phys. 118, 99–190 ( 2001).

    CAS  Google Scholar 

  4. Back, C.H. et al. Minimum field strength in precessional magnetization reversal. Science 285, 864–867 ( 1999).

    Article  CAS  Google Scholar 

  5. Gerrits, Th., van den Berg, H.A.M., Hohlfeld, J., Bär, L. & Rasing, Th. Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping. Nature 418, 509–511 ( 2002).

    Article  CAS  Google Scholar 

  6. Kaka S. & Russek, S.E. Precessional switching of submicrometer spin-valves. Appl. Phys. Lett. 80, 2958–2960 ( 2002).

    Article  CAS  Google Scholar 

  7. Schumacher, H.W. et al. Phase coherent precessional magnetization reversal in microscopic spin valve elements. Phys. Rev. Lett. 90, 17201 ( 2003).

    Article  CAS  Google Scholar 

  8. Schumacher, H.W., Chappert, C., Sousa, R.C., Freitas, P.P. & Miltat, J. Quasiballistic magnetization reversal. Phys. Rev. Lett. 90, 017204 ( 2003).

    Article  CAS  Google Scholar 

  9. Hillebrands, B. & Fassbender, J. Ultrafast magnetic switching. Nature 418, 493–494 ( 2002).

    Article  CAS  Google Scholar 

  10. Myers, E.B., Ralph, D.C., Katine, J.A., Louie, R.N. & Buhrman, R.A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 ( 1999).

    Article  CAS  Google Scholar 

  11. Garcia-Palacios, J.L. & Lazaro, F.J. Langevin-dynamics study of the dynamical properties of small magnetic particles. Phys. Rev. B 58, 14937–14958 ( 1998).

    Article  CAS  Google Scholar 

  12. Coffey, W.T. et al. Thermally activated relaxation time of a single domain ferromagnetic particle subjected to a uniform field at an oblique angle to the easy axis: Comparison with experimental observations. Phys. Rev. Lett. 80, 5655–5658 ( 1998).

    Article  CAS  Google Scholar 

  13. Bauer, M., Fassbender, J., Hillebrands, B. & Stamps, R.L. Switching behavior of a Stoner particle beyond the relaxation time limit Phys. Rev. B 61, 3410–3416 ( 2000).

    Article  CAS  Google Scholar 

  14. Stoner, E.C. & Wohlfarth, E.P. A mechanism of magnetic hysteresis in heterogeneous allows. Phil. Trans. R. Soc. Lond. A 240, 599–608 ( 1948).

    Article  Google Scholar 

  15. Thiaville, A. Coherent rotation of magnetization in three dimensions: A geometrical approach. Phys. Rev. B 61, 12221–12232 ( 2000).

    Article  CAS  Google Scholar 

  16. Wernsdorfer, W. et al. Experimental evidence of the Néel-Brown model of magnetization reversal. Phys. Rev. Lett. 78, 1791–1794 ( 1997).

    Article  CAS  Google Scholar 

  17. Guerret-Piécourt, C., Le Bouar, Y., Loiseau, A. & Pascard, H. Relation between metal electronic-structure and morphology of metal-compounds inside carbon nanotubes. Nature 372, 761–765 ( 1994).

    Article  Google Scholar 

  18. Wernsdorfer, W., Thirion, C., Demoncy, N., Pascard, H. & Mailly, D. Magnetisation reversal by uniform rotation (Stoner–Wohlfarth model) in fcc cobalt nanoparticles. J. Magn. Magn. Mater. 242–245, 132–137 ( 2002).

    Article  Google Scholar 

  19. Bonet, E. et al. Three-dimensional magnetization reversal measurements in nanoparticles. Phys. Rev. Lett. 83, 4188–4191 ( 1999).

    Article  CAS  Google Scholar 

  20. Schleicher, B. et al. Magnetization reversal measurements of size-selected iron oxide particles produced via an aerosol route. Appl. Organometall. Chem. 12, 315–320 ( 1998).

    Article  CAS  Google Scholar 

  21. Thirion, C. et al. Micro-SQUID technique for studying the temperature dependence of switching fields of single nanoparticles. J. Magn. Magn. Mater. 242–245, 993–994 ( 2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union network MASSDOTS. B. Barbara, A. Benoit, E. Bonet and H. Pascard are acknowledged for the continuous support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wernsdorfer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thirion, C., Wernsdorfer, W. & Mailly, D. Switching of magnetization by nonlinear resonance studied in single nanoparticles. Nature Mater 2, 524–527 (2003). https://doi.org/10.1038/nmat946

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat946

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing