Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure

Abstract

High-pressure synthesis is a powerful method for the preparation of novel materials with high elastic moduli and hardness. Additionally, such materials may exhibit interesting thermal, optoelectronic, semiconductuing, magnetic or superconducting properties. Here, we report on the high-pressure synthesis of zirconium and hafnium nitrides with the stoichiometry M3N4, where M = Zr, Hf. Synthesis experiments were performed in a laser-heated diamond anvil cell at pressures up to 18 GPa and temperatures up to 3,000 K. We observed formation of cubic Zr3N4 and Hf3N4 (c-M3N4) with a Th3P4-structure, where M-cations are eightfold coordinated by N anions. The c-M3N4 phases are the first binary nitrides with such a high coordination number. Both compounds exhibit high bulk moduli around 250 GPa, which indicates high hardness. Moreover, the new nitrides, c-Zr3N4 and c-Hf3N4, may be the first members of a larger group of transition metal and/or lanthanide nitrides with interesting ferromagnetic or superconducting behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample assemblage in a laser-heated diamond anvil cell.
Figure 2: Raman spectrum of c-Hf3N4 synthesized at 18 GPa.
Figure 3: X-ray powder diffractogram of c-Hf3N4 with an admixture of δ-HfN.
Figure 4: Raman spectrum of c-Zr3N4 synthesized at 16 GPa.

Similar content being viewed by others

References

  1. Lengauer, W. in Handbook of Ceramic Hard Materials (ed. Riedel, R.) 202–252 (Wiley-VCH, Weinheim, 2000).

    Google Scholar 

  2. Juza, R., Rabenau, A. & Nitschke, I. Über ein braunes Zirkonnitrid Zr3N4 . Z. Anorg. Allg. Chem. 332, 1–4 (1964).

    CAS  Google Scholar 

  3. Lerch, M., Füglein, E. & Wrba, J. hesis, crystal structure, and high temperature behavior of Zr3N4 . Z. Anorg. Allg. Chem. 622, 367–372 (1996).

    CAS  Google Scholar 

  4. Salmenoja, K., Korhonen, A.S., Erola, E. & Molarius, J.M. Stability of nitrogen-rich titanium nitride and zirconium nitride films. Appl. Phys. Lett. 49, 505–506 (1986).

    CAS  Google Scholar 

  5. Ristolainen, E.O., Molarius, J.M., Korhonen, A.S. & Lindroos, V.K. A study of nitrogen-rich titanium and zirconium nitride films. J. Vac. Sci. Technol. A 5, 2184–2189 (1987).

    CAS  Google Scholar 

  6. Kothari, D.C., Scardi, P., Gialanella, S. & Guzman, L. Structural analysis of TiNx films prepared by reactive-ion-beam-enhanced deposition. Phil. Mag. B 61, 627–637 (1990).

    CAS  Google Scholar 

  7. Fix, R., Gordon, R.G. & Hoffman, D.M. Chemical vapor deposition of titanium, zirconium, and hafnium nitride thin films. Chem. Mater. 3, 1138–1148 (1991).

    CAS  Google Scholar 

  8. Andrievski, R.A. Review. Films of interstitial phases: synthesis and properties. J. Mater. Sci. 32, 4463–4484 (1997).

    CAS  Google Scholar 

  9. Johansson, B.O., Hentzell, H.T.G., Harper, J.M.E. & Cuomo, J.J. Higher nitrides of hafnium, zirconium, and titanium synthesised by dual ion beam deposition. J. Mater. Res. 1, 442–451 (1986).

    CAS  Google Scholar 

  10. Johansson, B.O., Sundgren, J.-E., Helmersson, U. & Hibbs, M.K. Structure of reactively magnetron sputtered Hf-N films. Appl. Phys. Lett. 44, 670–672 (1984).

    CAS  Google Scholar 

  11. Smith, F.T.J. Structure and electrical properties of sputtered films of hafnium and hafnium compounds. J. Appl. Phys. 41, 4227–4231 (1970).

    CAS  Google Scholar 

  12. Zerr, A. et al. Synthesis of cubic silicon nitride. Nature 400, 340–342 (1999).

    CAS  Google Scholar 

  13. Leinenweber, K. et al. Synthesis and structure refinement of the spinel, γ-Ge3N4 . Chem. Eur. J. 5, 3076–3078 (1999).

    CAS  Google Scholar 

  14. Serghiou, G., Miehe, G., Tschauner, O., Zerr, A. & Boehler, R. Synthesis of a cubic Ge3N4 phase at high pressures and temperatures. J. Chem. Phys. 111, 4659–4662 (1999).

    CAS  Google Scholar 

  15. Scotti, N., Kockelmann, W., Senker, J., Traßel, S. & Jacobs, H. Sn3N4, a tin(IV) nitride - Syntheses and the first crystal structure determination of a binary tin-nitrogen compound. Z. Anorg. Allg. Chem. 625, 1435–1439 (1999).

    CAS  Google Scholar 

  16. He, H., Sekine, T., Kobayashi, T. & Hirosaki, H. Shock-induced phase transition of β-Si3N4 to c-Si3N4 . Phys. Rev. B 62, 11412–11417 (2000).

    CAS  Google Scholar 

  17. Soingard, E., Somayazulu, M., Dong, J., Sankey, O.F. & McMillan, P.F. High pressure - high temperature synthesis and elasticity of the cubic nitride spinel γ-Si3N4 . J. Phys. Condens. Matter 13, 557–563 (2001).

    Google Scholar 

  18. Zerr, A. et al. Elastic moduli and hardness of cubic silicon nitride. J. Am. Ceram. Soc. 85, 86–90 (2002).

    CAS  Google Scholar 

  19. Jiang, J.Z. et al. Compressibility and thermal expansion of cubic silicon nitride. Phys. Rev. B 65, 161202 (2002).

    Google Scholar 

  20. Jiang, J.Z., Kragh, F., Frost, D.J., Stahl, K. & Lindelov, H. Hardness and thermal stability of cubic silicon nitride. J. Phys. Condens. Mat. 13, L515–L520 (2001).

    CAS  Google Scholar 

  21. Tanaka, I. et al. Hardness of cubic silicon nitride. J. Mater. Res. 17, 731–733 (2002).

    CAS  Google Scholar 

  22. Mo, S.-D. et al. Interesting physical properties of the new spinel phase of Si3N4 and C3N4 . Phys. Rev. Lett. 83, 5046–5049 (1999).

    CAS  Google Scholar 

  23. Zerr, A. et al. New high pressure nitrides. Acta Cryst. A 58 (suppl.), C47 (2002).

    Google Scholar 

  24. Ching, W.-Y., Mo, S.-D., Ouyang, L. & Rulis, P. Theoretical prediction of the structure and properties of cubic spinel nitrides. J. Am. Ceram. Soc. 85, 75–80 (2002).

    CAS  Google Scholar 

  25. Dong, J., Sankey, O.F., Deb, S.K., Wolf, G. & McMillan, P.F. Theoretical study of β-Ge3N4 and its high-pressure spinel γ phase. Phys. Rev. B 61, 11979–11992 (2000).

    CAS  Google Scholar 

  26. Baur, W.H. & Lerch, M. On deciding between space groups Pnam and Pna21 for the crystal structure of Zr3N4 . Z. Anorg. Allg. Chem. 622, 1729–1730 (1996).

    CAS  Google Scholar 

  27. Boehler, R. High-pressure experiments and the phase diagram of lower mantle and core materials. Rev. Geophys. 38, 221–245 (2000).

    CAS  Google Scholar 

  28. Zerr, A., Serghiou, G. & Boehler, R. in Hard Materials (ed. Riedel, R.) 41–65 (Wiley-VCH, Weinheim, 2000).

    Google Scholar 

  29. Jamieson, J.C. Crystal structures of titanium, zirconium, and hafnium at high pressures. Science 140, 72–73 (1963).

    CAS  Google Scholar 

  30. Young, D.A. Phase Diagrams Of The Elements (Univ. California Press, Berkeley, 1991).

    Google Scholar 

  31. Ching, W.Y., Mo, S.-D., Ouyang, L., Tanaka, I. & Yoshiya, M. Prediction of the new spinel phase of Ti3N4 and SiTi2N4 and the metal-insulator transition. Phys. Rev. B 61, 10609–10614 (2000).

    CAS  Google Scholar 

  32. Powder Diffraction File-2 Database (JCPDS International Centre for Diffraction Data, Newtown Square, Pennsylvania 19073, USA, 1996).

  33. Olijnyk, H. High pressure x-ray diffraction studies on solid N2 up to 43.9 GPa. J. Chem. Phys. 93, 8968–8972 (1990).

    CAS  Google Scholar 

  34. Lam, D.J., Darby, J.B.J. & Nevitt, M.V. in The Actinides: Electronic Structure Related Properties (eds Freeman, A.J. & Darby, J.B.J.) 119–184 (Academic, New York, 1974).

    Google Scholar 

  35. Holtzberg, F. & Methfessel, S. Rear-earth compounds with the Th3P4 type structure. J. Appl. Phys. 37, 1433–1435 (1966).

    CAS  Google Scholar 

  36. Eatough, N.L., Webb, A.W. & Hall, H.T. High-pressure Th3P4 type polymorphs of rare earth sesquichalcogenides. Inorg. Chem. 8, 2069–2071 (1969).

    CAS  Google Scholar 

  37. Teter, D.M. & Hemley, R.J. Low-compressibility carbon nitrides. Science 271, 53–55 (1996).

    CAS  Google Scholar 

  38. Karavaev, G.F. & Khrapov, A.V. Group-theoretical study of phonon spectrum in Th3P4-type crystals. Izv. Vuz. Fiz. 62–68 (1975).

  39. Provenzano, P.L., Boldish, S.I. & White, W.B. Vibrational spectra of ternary sulfides with the Th3P4 structure. Mater. Res. Bull. 12, 939–946 (1977).

    CAS  Google Scholar 

  40. Brazhkin, V.V., Lyapin, A.G. & Hemley, R.J. Harder than diamond: dreams and reality. Phil. Mag. A 82, 231–253 (2002).

    CAS  Google Scholar 

  41. Fournier, J.-M. & Troc, R. in Handbook on the Physics and Chemistry of the Actinides (eds Freeman, A.J. & Lander, G.H.) 29–173 (North-Holland Physics, Amsterdam, 1985).

    Google Scholar 

  42. Flahaut, J. in Handbook on the Physics and Chemistry of Rare Earths (eds Gschneider, K.A.J. & Eyring, L.) 1–88 (North-Holland, Amsterdam, 1979).

    Google Scholar 

  43. Hirota, K., Kinomura, N., Kume, S. & Koizumi, M. Transition of sulfospinel to Th3P4 type phase under pressure. Mater. Res. Bull. 11, 227–232 (1976).

    CAS  Google Scholar 

  44. Schneider, H., Häfner, W., Wokaun, A. & Olijnyk, H. Room temperature Raman scattering studies of external and internal modes of solid nitrogen at pressures 8<P<54 GPa. J. Chem. Phys. 96, 8046–8053 (1992).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Boehler for technical support. We are grateful to R. Feile and M. A. Strzhemechny for fruitful discussions and to V. Hillgren for comments. The work was financially supported by the Deutsche Forschungsgemeinschaft (Bonn, Germany) and by the Fonds der Chemischen Industrie (Frankfurt, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Zerr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zerr, A., Miehe, G. & Riedel, R. Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure. Nature Mater 2, 185–189 (2003). https://doi.org/10.1038/nmat836

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing