Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Encoding microcarriers by spatial selective photobleaching

Abstract

Bead-based assays on very large numbers of molecules in gene expression studies, drug screening and clinical diagnostics1, require the encoding of each of the microspheres according to the particular ligand bound to its surface2,3. This allows mixing the uniquely encoded microspheres and subjecting them to an assay simultaneously. When a particular microsphere gives a positive reaction, the substance on its surface can be identified by reading the code. Previously reported techniques for colour encoding polymer microspheres4,5,6,7,8,9,10 only allow for a limited number of unique codes. Graphical encoding methods use metallic particles11,12, which are rather uncommon in screening applications. Here, we demonstrate a new approach to encode polymer microspheres that are commonly used in screening applications, such as polystyrene microspheres, with a method that provides a virtually unlimited number of unique codes. Patterns can be written in fluorescently dyed microspheres by 'spatial selective photobleaching' and can be identified by confocal microscopy. Such encoded microparticles can find broad application in the collection and analysis of genetic information, high-throughput screening, medical diagnostics and combinatorial chemistry, and can also be used for labelling of consumer goods or as security labels to prevent counterfeiting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Encoding by spatial selective photobleaching.
Figure 2: Intensity and width encoding.
Figure 3: 'Dot code'.
Figure 4: Ferromagnetic fluorescent microspheres.

Similar content being viewed by others

References

  1. Meza, M.B. Bead-based HTS applications in drug discovery. Drug Discov. Today 1 (HTS Suppl.), 38–41 (2000).

    Article  CAS  Google Scholar 

  2. Braeckmans, K. et al. Carrying the code. Mod. Drug Disc. (in the press).

  3. Braeckmans, K., De Smedt, S.C., Leblans, M., Pauwels, R. & Demeester, J. Encoding microcarriers: present and future technologies. Nat. Rev. Drug Disc. 1, 447–456 (2002).

    Article  CAS  Google Scholar 

  4. Egner, B.J. et al. Tagging in combinatorial chemistry: the use of coloured and fluorescent beads. Chem. Commun. 8, 735–736 (1997).

    Article  Google Scholar 

  5. Kettman, J.R., Davies, T., Chandler, D., Oliver, K.G. & Fulton, R.J. Classification and properties of 64 multiplexed microsphere sets. Cytometry 33, 234–243 (1998).

    Article  CAS  Google Scholar 

  6. Walt, D.R. Bead-based fiber-optic arrays. Science 287, 451–452 (2000).

    Article  CAS  Google Scholar 

  7. Trau, M. & Battersby, B.J. Novel colloidal materials for high-throughput screening applications in drug discovery and genomics. Adv. Mater. 13, 975–979 (2001).

    Article  CAS  Google Scholar 

  8. Keij, J.F. & Steinkamp, J.A. Flow cytometric characterization and classification of multiple dual-colour fluorescent microspheres using fluorescence lifetime. Cytometry 33, 318–323 (1998).

    Article  CAS  Google Scholar 

  9. Kürner, J.M., Klimant, I., Krause, C., Pringsheim, E. & Wolfbeis, O.S. A new type of phosphorescent nanospheres for use in advanced time-resolved multiplexed bioassays. Anal. Biochem. 297, 32–41 (2001).

    Article  Google Scholar 

  10. Han, M., Gao, X.H., Su, J.Z. & Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635 (2001).

    Article  CAS  Google Scholar 

  11. Dames, A., England, J. & Colby, E. Bio-assay technique. World patent 00/16893 (2000).

  12. Nicewarner-Peña, S.R. et al. Submicrometer metallic barcodes. Science 294, 137–141 (2001).

    Article  Google Scholar 

  13. Pawley, J.B. Handbook of Biological Confocal Microscopy 2nd edn (Plenum, New York, 1995).

    Book  Google Scholar 

  14. Hell, S., Reiner, G., Cremer, C. & Stelzer, E.H.K. Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. J. Microsc. 169, 391–405 (1993).

    Article  Google Scholar 

  15. Wang, N., Butler, J.P. & Ingber, D.E. Mechanotransduction across the cell-surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

    Article  CAS  Google Scholar 

  16. Prabhakar, U., Eirikis, E. & Davis, H.M. Simultaneous quantification of proinflammetary cytokines in human plasma using the LabMAP (TM) assay. J. Immunol. Methods 260, 207–218 (2002).

    Article  CAS  Google Scholar 

  17. Martins, T.B. Development of internal controls for the Luminex instrument as part of a multiplex seven-analyte viral respiratory antibody profile. Clin. Diagn. Lab. Immun. 9, 41–45 (2002).

    Google Scholar 

  18. Ye, F. et al. Fluorescent microsphere-based readout technology for multiplexed human single nucleotide polymorphism analysis and bacterial identification. Hum. Mutat. 17, 305–316 (2001).

    Article  CAS  Google Scholar 

  19. Taylor, J.D. et al. Flow cytometric platform for high-throughput single nucleotide polymorphism analysis. Biotechniques 30, 661–675 (2001).

    Article  CAS  Google Scholar 

  20. Yang, L., Tran, D.K. & Wang, X. BADGE, BeadsArray for the detection of gene expression, a high-throughput diagnostic bioassay. Genome Res. 11, 1888–1898 (2001).

    Article  CAS  Google Scholar 

  21. Dunbar, S.A. & Jacobson, J.W. Application of the Luminex LabMAP in rapid screening for mutations in the cystic fibrosis transmembrane conductance regulator gene: A pilot study. Clin. Chem. 46, 1498–1500 (2000).

    CAS  Google Scholar 

  22. Vignali, D.A.A. Multiplexed particle-based flow cytometric assays. J. Immunol. Methods 243, 243–255 (2000).

    Article  CAS  Google Scholar 

  23. Gordon, R.F. & MCDade, R.L. Multiplexed quantification of human IgG, IgA, and IgM with the FlowMetrix(TM) system. Clin. Chem. 43, 1799–1801 (1997).

    CAS  Google Scholar 

  24. WalkerPeach, C.R., Smith, P.L., DuBois, D.B. & Fulton, R.J. A novel rapid multiplexed assay for herpes simplex virus DNA using the FlowMetrix(TM) cytometric microsphere technology. Clin. Chem. 43, 21–21 (1997).

    Google Scholar 

  25. Smith, P.L., WalkerPeach, C.R., Fulton, R.J. & DuBois, D.B. A rapid, sensitive, multiplexed assay for detection of viral nucleic acids using the FlowMetrix system. Clin. Chem. 44, 2054–2056 (1998).

    CAS  Google Scholar 

  26. Oliver, K.G., Kettman, J.R. & Fulton, R.J. Multiplexed analysis of human cytokines by use of the FlowMetrix system. Clin. Chem. 44, 2057–2060 (1998).

    CAS  Google Scholar 

  27. Bellisario, R., Colinas, R.J. & Pass, K.A. Simultaneous measurement of thyroxine and thyrotropin from newborn dried blood-spot specimens using a multiplexed fluorescent microsphere immunoassay. Clin. Chem. 46, 1422–1424 (2000).

    CAS  Google Scholar 

  28. Ferguson, J.A., Steemers, F.J. & Walt, D.R. High-density fiber-optic DNA random microsphere array. Anal. Chem. 72, 5618–5624 (2000).

    Article  CAS  Google Scholar 

  29. Ferguson, J.A., Boles, T.C., Adams, C.P. & Walt, D.R. A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nat. Biotechnol. 14, 1681–1684 (1996).

    Article  CAS  Google Scholar 

  30. Wedekind, P., Kubitscheck, U., Heinrich, O. & Peters, R. Line-scanning microphotolysis for diffraction-limited measurements of lateral diffusion. Biophys. J. 71, 1621–1632 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the IWT and Tibotec is acknowledged with gratitude. Ghent University (BOF, the FWO-Vlaanderen ('krediet aan navorsers') and the IWT (Industrial Basic Research Project) are acknowledged for their support through instrumentation credits. We also wish to thank Emmanuel Gustin for useful discussions about the code design, Tom Meyvis for his help with the bleaching experiments and Patrick Van Oostveldt for many fruitful discussions about confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefaan C. De Smedt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braeckmans, K., De Smedt, S., Roelant, C. et al. Encoding microcarriers by spatial selective photobleaching. Nature Mater 2, 169–173 (2003). https://doi.org/10.1038/nmat828

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat828

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing