Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure

Abstract

As fabrication technology pushes the dimensions of ferromagnetic structures into the nanoscale, understanding the magnetization processes of these structures is of fundamental interest, and key to future applications in hard disk drives, magnetic random access memory and other 'spintronic' devices1,2,3,4. Measurements on elongated magnetic nanostructures5,6 highlighted the importance of nucleation and propagation of a magnetic boundary, or domain wall, between opposing magnetic domains in the magnetization reversal process. Domain-wall propagation in confined structures is of basic interest7,8 and critical to the performance of a recently demonstrated magnetic logic scheme for spintronics9. A previous study of a 500-nm-wide NiFe structure obtained very low domain-wall mobility in a three-layer device10. Here we report room-temperature measurements of the propagation velocity of a domain wall in a single-layer planar Ni80Fe20 ferromagnetic nanowire 200 nm wide. The wall velocities are extremely high and, importantly, the intrinsic wall mobility is close to that in continuous films11, indicating that lateral confinement does not significantly affect the gyromagnetic spin damping parameter to the extreme extent previously suggested10. Consequently the prospects for high-speed domain-wall motion in future nanoscale spintronic devices are excellent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Details of the magnetic nanostructure and an example of a single magnetic reversal in a nanostructure.
Figure 2: Measured probabilities of non-switching of the magnetization in the nanostructure.
Figure 3: Domain-wall velocity as a function of magnetic field amplitude.

Similar content being viewed by others

References

  1. Koch, R.H. et al. Magnetization reversal in micron-sized magnetic thin films. Phys. Rev. Lett. 81, 4512–4515 (1998).

    Article  CAS  Google Scholar 

  2. Cowburn, R.P., Koltsov, D.K., Adeyeye, A.O. & Welland, M.E. Single-domain circular nanomagnets. Phys. Rev. Lett. 83, 1042–1045 (1999).

    Article  CAS  Google Scholar 

  3. Wolf, S.A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  4. Gerrits, T. et al. Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping. Nature 418, 509–512 (2002).

    Article  CAS  Google Scholar 

  5. Wernsdorfer, W. et al. Nucleation of magnetization reversal in individual nanosized nickel wires. Phys. Rev. Lett. 77, 1873–1876 (1996).

    Article  CAS  Google Scholar 

  6. Wernsdorfer, W. et al. Measurements of magnetization switching in individual nickel nanowires. Phys. Rev. B 55, 11552–11559 (1997).

    Article  CAS  Google Scholar 

  7. Tatara, G. & Fukuyama, H. Macroscopic quantum tunnelling of a domain wall in a ferromagnetic metal. Phys. Rev. B 72, 772–775 (1994).

    CAS  Google Scholar 

  8. Jamet, J.P. et al. Giant enhancement of domain wall velocity in irradiated ultrathin magnetic nanowires. IEEE Trans. Magn. 37, 2120–2122 (2001).

    Article  CAS  Google Scholar 

  9. Allwood, D.A. et al. Submicrometer ferromagnetic NOT gate and shift register. Science 296, 2003–2006 (2002).

    Article  CAS  Google Scholar 

  10. Ono, T. et al. Propagation of a magnetic domain wall in a submicrometer magnetic wire. Science 284, 468–470 (1999).

    Article  CAS  Google Scholar 

  11. Redjdal, M., Giusti, J., Ruane, M.F. & Humphrey, F.B. Thickness dependent wall mobility in thin permalloy films. J. Appl. Phys. 91, 7547–7549 (2002).

    Article  CAS  Google Scholar 

  12. Rizzo, N.D. et al. Thermally activated magnetization reversal in submicron magnetic tunnel junctions for magnetoresistive random access memory. Appl. Phys. Lett. 80, 2335–2337 (2002).

    Article  CAS  Google Scholar 

  13. Choi, B.C. et al. Ultrafast magnetization reversal dynamics investigated by time domain imaging. Phys. Rev. Lett. 86, 728–731 (2001).

    Article  CAS  Google Scholar 

  14. Wu, J. et al. Picosecond large angle reorientation of the magnetization in Ni81Fe19 circular thin-film elements. J. Appl. Phys. 91, 278–286 (2002).

    Article  CAS  Google Scholar 

  15. Trunk, T., Redjal, M., Kakay, A., Ruane, M.F. & Humphrey, F.B. Domain wall structure in permalloy films with decreasing thickness at the Bloch to Neel transition. J. Appl. Phys. 89, 7606–7608 (2001).

    Article  CAS  Google Scholar 

  16. Cowburn, R.P., Allwood, D.A., Xiong, G. & Cooke, M.D. Domain wall injection and propagation in planar permalloy nanowires. J. Appl. Phys. 91, 6949–6951 (2002).

    Article  CAS  Google Scholar 

  17. Cowburn, R.P., Koltsov, D.K., Adeyeye, A.O. & Welland, M.E. Probing submicron nanomagnets by magneto-optics. Appl. Phys. Lett. 73, 3947–3949 (1998).

    Article  CAS  Google Scholar 

  18. Xiong, G., Allwood, D.A., Cooke, M.D. & Cowburn, R.P. Magnetic nanoelements for magnetoelectronics made by focused ion beam milling. Appl. Phys. Lett. 79, 3461–3463 (2001).

    Article  CAS  Google Scholar 

  19. Atkinson, D., Allwood, D.A., Cooke, M.D. & Cowburn, R.P. Nanosecond pulsed field magnetization reversal in thin-film NiFe studied by Kerr effect magnetometry. J. Phys. D 34, 3019–3023 (2001).

    Article  CAS  Google Scholar 

  20. Ferré, J. in Spin Dynamics in Confined Magnetic Structures I (eds Hillebrands, B. & Ounadjela, K.) 127–160 (Springer, Heidelberg, 2002).

    Book  Google Scholar 

  21. Konishi, S., Yamada, S. & Kusuda, T. Domain-wall velocity, mobility and mean-free-path in permalloy films. IEEE Trans. Magn. 7, 722–724 (1971).

    Article  CAS  Google Scholar 

  22. Malozemoff, A.P. & Slonczewski, J.C. Magnetic Domain Walls in Bubble Materials (Academic, New York, 1979).

    Google Scholar 

  23. Ebels, U., Radulescu, A., Henry, Y., Piraux, L. & Ounadjela, K. Spin accumulation and domain wall magnetoresistance in 35 nm Co wires. Phys. Rev. Lett. 84, 983–986 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Eastgate Investments Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell P. Cowburn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atkinson, D., Allwood, D., Xiong, G. et al. Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure. Nature Mater 2, 85–87 (2003). https://doi.org/10.1038/nmat803

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat803

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing