Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Topological states of condensed matter

Abstract

Topological states of quantum matter have been investigated intensively in recent years in materials science and condensed matter physics. The field developed explosively largely because of the precise theoretical predictions, well-controlled materials processing, and novel characterization techniques. In this Perspective, we review recent progress in topological insulators, the quantum anomalous Hall effect, chiral topological superconductors, helical topological superconductors and Weyl semimetals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Topological states in 2D.
Figure 2: Transport experiments for QSH, QAH and chiral Majorana fermion modes.

Similar content being viewed by others

References

  1. von Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  CAS  Google Scholar 

  2. Laughlin, R. B. Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632–5633 (1981).

    Article  Google Scholar 

  3. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Article  CAS  Google Scholar 

  4. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  CAS  Google Scholar 

  5. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  CAS  Google Scholar 

  6. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  CAS  Google Scholar 

  7. Bernevig, B. A. & Zhang, S.-C. Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006).

    Article  CAS  Google Scholar 

  8. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  9. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  CAS  Google Scholar 

  10. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  CAS  Google Scholar 

  11. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Article  CAS  Google Scholar 

  12. Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007).

    Article  CAS  Google Scholar 

  13. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  CAS  Google Scholar 

  14. Roy, R. Topological phases and the quantum spin Hall effect in three dimensions. Phys. Rev. B 79, 195322 (2009).

    Article  CAS  Google Scholar 

  15. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article  CAS  Google Scholar 

  16. Qi, X.-L., Wu, Y.-S. & Zhang, S.-C. Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. Phys. Rev. B 74, 085308 (2006).

    Article  CAS  Google Scholar 

  17. Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z. & Zhang, S.-C. Quantum anomalous Hall effect in Hg1−yMnyTe quantum wells. Phys. Rev. Lett. 101, 146802 (2008).

    Article  CAS  Google Scholar 

  18. Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    Article  CAS  Google Scholar 

  19. Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000).

    Article  CAS  Google Scholar 

  20. Ivanov, D. A. Non-abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001).

    Article  CAS  Google Scholar 

  21. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  CAS  Google Scholar 

  22. Qi, X.-L., Hughes, T. L., Raghu, S. & Zhang, S.-C. Time-reversal-invariant topological superconductors and superfluids in two and three dimensions. Phys. Rev. Lett. 102, 187001 (2009).

    Article  CAS  Google Scholar 

  23. Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. W. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008).

    Article  CAS  Google Scholar 

  24. Kitaev, A. Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22 (2009).

    CAS  Google Scholar 

  25. Roth, A. et al. Nonlocal transport in the quantum spin Hall state. Science 325, 294–297 (2009).

    Article  CAS  Google Scholar 

  26. Hart, S. et al. Induced superconductivity in the quantum spin Hall edge. Nat. Phys. 10, 638–643 (2014).

    Article  CAS  Google Scholar 

  27. Liu, C., Hughes, T. L., Qi, X.-L., Wang, K. & Zhang, S.-C. Quantum spin Hall effect in inverted type-II semiconductors. Phys. Rev. Lett. 100, 236601 (2008).

    Article  CAS  Google Scholar 

  28. Knez, I. et al. Observation of edge transport in the disordered regime of topologically insulating InAs/GaSb quantum wells. Phys. Rev. Lett. 112, 026602 (2014).

    Article  CAS  Google Scholar 

  29. Du, L., Knez, I., Sullivan, G. & Du, R.-R. Robust helical edge transport in gated InAs/GaSb bilayers. Phys. Rev. Lett. 114, 096802 (2015).

    Article  Google Scholar 

  30. Spanton, E. M. et al. Images of edge current in InAs/GaSb quantum wells. Phys. Rev. Lett. 113, 026804 (2014).

    Article  CAS  Google Scholar 

  31. Pribiag, V. S. et al. Edge-mode superconductivity in a two-dimensional topological insulator. Nat. Nanotech. 10, 593–597 (2015).

    Article  CAS  Google Scholar 

  32. Li, T. et al. Low temperature conductivity of weakly interacting quantum spin Hall edges in strained-Layer InAs/GaInSb. Preprint at http://arXiv.org/abs/1707.09024 (2017).

  33. Xu, Y. et al. Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 111, 136804 (2013).

    Article  CAS  Google Scholar 

  34. Zhu, F. et al. Epitaxial growth of two-dimensional stanene. Nat. Mat. 14, 1020–1025 (2015).

    Article  CAS  Google Scholar 

  35. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    Article  CAS  Google Scholar 

  36. Fei, Z. et al. Edge conduction in monolayer WTe2 . Nat. Phys. 13, 677–682 (2017).

    Article  CAS  Google Scholar 

  37. Liu, Q., Liu, C.-X., Xu, C., Qi, X.-L. & Zhang, S.-C. Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009).

    Article  CAS  Google Scholar 

  38. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  CAS  Google Scholar 

  39. Chang, C.-Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

    Article  CAS  Google Scholar 

  40. Mogi, M. et al. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect. Appl. Phys. Lett. 107, 182401 (2015).

    Article  CAS  Google Scholar 

  41. Wang, J., Lian, B. & Zhang, S.-C. Universal scaling of the quantum anomalous Hall plateau transition. Phys. Rev. B 89, 085106 (2014).

    Article  CAS  Google Scholar 

  42. Kou, X. et al. Metal-to-insulator switching in quantum anomalous Hall states. Nat. Commun. 6, 8474 (2015).

    Article  CAS  Google Scholar 

  43. Feng, Y. et al. Observation of the zero Hall plateau in a quantum anomalous Hall insulator. Phys. Rev. Lett. 115, 126801 (2015).

    Article  CAS  Google Scholar 

  44. Mogi, M. et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516–521 (2017).

    Article  CAS  Google Scholar 

  45. Wang, J., Lian, B., Qi, X.-L. & Zhang, S.-C. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state. Phys. Rev. B 92, 081107 (2015).

    Article  CAS  Google Scholar 

  46. Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    Article  CAS  Google Scholar 

  47. Okada, K. N. et al. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state. Nat. Commun. 7, 12245 (2016).

    Article  CAS  Google Scholar 

  48. Wu, L. et al. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science 354, 1124–1127 (2016).

    Article  CAS  Google Scholar 

  49. Dziom, V. et al. Observation of the universal magnetoelectric effect in a 3D topological insulator. Nat. Commun. 8, 15197 (2017).

    Article  CAS  Google Scholar 

  50. Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003).

    Article  CAS  Google Scholar 

  51. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Chiral topological superconductor from the quantum Hall state. Phys. Rev. B 82, 184516 (2010).

    Article  CAS  Google Scholar 

  52. Wang, J., Zhou, Q., Lian, B. & Zhang, S.-C. Chiral topological superconductor and half-integer conductance plateau from quantum anomalous Hall plateau transition. Phys. Rev. B 92, 064520 (2015).

    Article  CAS  Google Scholar 

  53. Chung, S. B., Qi, X.-L., Maciejko, J. & Zhang, S.-C. Conductance and noise signatures of Majorana backscattering. Phys. Rev. B 83, 100512 (2011).

    Article  CAS  Google Scholar 

  54. He, Q. L. et al. Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure. Science 357, 294–299 (2017).

    Article  CAS  Google Scholar 

  55. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  CAS  Google Scholar 

  56. Wang, Z. et al. Topological nature of the FeSe0.5Te0.5 superconductor. Phys. Rev. B 92, 115119 (2015).

    Article  CAS  Google Scholar 

  57. Xu, G., Lian, B., Tang, P., Qi, X.-L. & Zhang, S.-C. Topological superconductivity on the surface of Fe-based superconductors. Phys. Rev. Lett. 117, 047001 (2016).

    Article  CAS  Google Scholar 

  58. Zhang, P. et al. Observation of topological superconductivity on the surface of iron-based superconductor. Preprint at http://arXiv.org/abs/1706.05163 (2017).

  59. Wang, D. et al. Observation of pristine Majorana bound state in iron-based superconductor. Preprint at http://arXiv.org/abs/1706.06074 (2017).

  60. Hasan, M. Z., Xu, S.-Y., Belopolski, I. & Huang, S.-M. Discovery of Weyl fermion semimetals and topological Fermi arc states. Annu. Rev. Con. Mat. Phys. 8, 289–309 (2017).

    Article  CAS  Google Scholar 

  61. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three dimensional solids. Rev. Mod. Phys. Preprint at http://arXiv.org/abs/1705.01111 (in the press, 2017).

  62. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  CAS  Google Scholar 

  63. Ruan, J. et al. Symmetry-protected ideal Weyl semimetal in HgTe-class materials. Nat. Commun. 7, 11136 (2016).

    Article  CAS  Google Scholar 

  64. Bulmash, D., Liu, C.-X. & Qi, X.-L. Prediction of a Weyl semimetal in Hg1−xyCdxMnyTe. Phys. Rev. B 89, 081106 (2014).

    Article  CAS  Google Scholar 

  65. König, M. et al. The quantum spin Hall effect: theory and experiment. J. Phys. Soc. Jpn 77, 031007 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.W. acknowledges support from the Natural Science Foundation of China through Grant No. 11774065, the Natural Science Foundation of Shanghai under Grant No. 17ZR1442500 and the National Thousand-Young-Talents Program. S.-C.Z. is supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Contributions

The Perspective reported here emerged from lively discussions between the authors. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Jing Wang or Shou-Cheng Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, SC. Topological states of condensed matter. Nature Mater 16, 1062–1067 (2017). https://doi.org/10.1038/nmat5012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat5012

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing