Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoscale transport of charge-transfer states in organic donor–acceptor blends

Abstract

Charge-transfer (CT) states, bound combinations of an electron and a hole on separate molecules, play a crucial role in organic optoelectronic devices. We report direct nanoscale imaging of the transport of long-lived CT states in molecular organic donor–acceptor blends, which demonstrates that the bound electron–hole pairs that form the CT states move geminately over distances of 5–10 nm, driven by energetic disorder and diffusion to lower energy sites. Magnetic field dependence reveals a fluctuating exchange splitting, indicative of a variation in electron–hole spacing during diffusion. The results suggest that the electron–hole pair of the CT state undergoes a stretching transport mechanism analogous to an ‘inchworm’ motion, in contrast to conventional transport of Frenkel excitons. Given the short exciton lifetimes characteristic of bulk heterojunction organic solar cells, this work confirms the potential importance of CT state transport, suggesting that CT states are likely to diffuse farther than Frenkel excitons in many donor–acceptor blends.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: m-MTDATA/3TPYMB charge-transfer blend.
Figure 2: Diffusion imaging.
Figure 3: Excitation-power-dependent and electric-field-dependent transient analysis.
Figure 4: Magnetic field effect.

Similar content being viewed by others

References

  1. Segal, M. et al. Extrafluorescent electroluminescence in organic light-emitting devices. Nature Mater. 6, 374–378 (2007).

    Article  CAS  Google Scholar 

  2. Zhu, X.-Y., Yang, Q. & Muntwiler, M. Charge-transfer excitons at organic semiconductor surfaces and interfaces. Acc. Chem. Res. 42, 1779–1787 (2009).

    Article  CAS  Google Scholar 

  3. Deibel, C., Strobel, T. & Dyakonov, V. Role of the charge transfer state in organic donor–acceptor solar cells. Adv. Mater. 22, 4097–4111 (2010).

    Article  CAS  Google Scholar 

  4. Gélinas, S., Poll, T. S. Van Der, Bazan, G. C. & Friend, R. H. Ultrafast long-range charge photovoltaic diodes. Science 343, 512–517 (2014).

    Article  Google Scholar 

  5. Jailaubekov, A. E. et al. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Nature Mater. 12, 66–73 (2013).

    Article  CAS  Google Scholar 

  6. Lee, J. et al. Charge transfer state versus hot exciton dissociation in polymer-fullerene blended solar cells. J. Am. Chem. Soc. 132, 11878–11880 (2010).

    Article  CAS  Google Scholar 

  7. Vandewal, K. et al. Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nature Mater. 13, 63–68 (2014).

    Article  CAS  Google Scholar 

  8. Yost, S. R. & Voorhis, T. Van. Electrostatic effects at organic semiconductor interfaces: A mechanism for ‘cold’ exciton breakup. J. Phys. Chem. C 117, 5617–5625 (2013).

    Article  CAS  Google Scholar 

  9. Muntwiler, M., Yang, Q., Tisdale, W. A. & Zhu, X. Y. Coulomb barrier for charge separation at an organic semiconductor interface. Phys. Rev. Lett. 101, 196403 (2008).

    Article  Google Scholar 

  10. Hallermann, M. et al. Correlation between charge transfer exciton recombination and photocurrent in polymer/fullerene solar cells. Appl. Phys. Lett. 97, 2008–2011 (2010).

    Article  Google Scholar 

  11. Goushi, K., Yoshida, K., Sato, K. & Adachi, C. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nature Photon. 6, 253–258 (2012).

    Article  CAS  Google Scholar 

  12. Chang, W. et al. Spin-dependent charge transfer state design rules in organic photovoltaics. Nature Commun. 6, 6415 (2015).

    Article  Google Scholar 

  13. Rao, A. et al. The role of spin in the kinetic control of recombination in organic photovoltaics. Nature 500, 435–439 (2013).

    Article  CAS  Google Scholar 

  14. Loi, M. A. et al. Charge transfer excitons in bulk heterojunctions of a polyfluorene copolymer and a fullerene derivative. Adv. Funct. Mater. 17, 2111–2116 (2007).

    Article  CAS  Google Scholar 

  15. Veldman, D. et al. Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends compositional and electric field dependence of the dissociation of charge transfer excitons in alternating. J. Am. Chem. Soc. 130, 7721–7735 (2008).

    Article  CAS  Google Scholar 

  16. Akselrod, G. M. et al. Visualization of exciton transport in ordered and disordered molecular solids. Nature Commun. 5, 3646 (2014).

    Article  CAS  Google Scholar 

  17. Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers (Oxford Univ. Press, 1999).

    Google Scholar 

  18. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article  CAS  Google Scholar 

  19. Miller, A. & Abrahams, E. Impurity conduction at low concentrations. Phys. Rev. 120, 745–755 (1960).

    Article  CAS  Google Scholar 

  20. Frankevich, E. L. et al. Polaron-pair generation in poly(phenylene vinylenes). Phys. Rev. B 46, 9320–9324 (1992).

    Article  CAS  Google Scholar 

  21. Frankevich, E. L., Lymarev, A. A. & Sokolik, I. A. CT-excitons and magnetic field effect in polydiacetylene crystals. Chem. Phys. 162, 1–6 (1992).

    Article  CAS  Google Scholar 

  22. Steiner, U. E. & Ulrich, T. Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 89, 51–147 (1989).

    Article  CAS  Google Scholar 

  23. Hu, B., Yan, L. & Shao, M. Magnetic field effects in organic semiconducting materials and devices. Adv. Mater. 21, 1500–1516 (2009).

    Article  CAS  Google Scholar 

  24. Knapp, E.-W. & Schulten, K. Magnetic field effect on the hyperfine-induced electron spin motion in radicals undergoing diamagnetic-paramagnetic exchange. J. Chem. Phys. 71, 1878–1883 (1979).

    Article  CAS  Google Scholar 

  25. Schulten, K. The effect of a magnetic field on the recombination of a radical pair. J. Mol. Liq. 86, 53–59 (2000).

    Article  Google Scholar 

  26. Shushin, A. Magnetic field effects on electron–hole recombination in disordered organic semiconductors. Phys. Rev. B 84, 115212 (2011).

    Article  Google Scholar 

  27. Braun, C. L. Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. J. Chem. Phys. 80, 4157–4161 (1984).

    Article  CAS  Google Scholar 

  28. Sweetnam, S. et al. Characterization of the polymer energy landscape in polymer: Fullerene bulk heterojunctions with pure and mixed phases. J. Am. Chem. Soc. 136, 14078–14088 (2014).

    Article  CAS  Google Scholar 

  29. Vandewal, K. et al. Varying polymer crystallinity in nanofiber poly(3-alkylthiophene): PCBM solar cells: Influence on charge-transfer state energy and open-circuit voltage. Appl. Phys. Lett. 95, 93–96 (2009).

    Article  Google Scholar 

  30. Congreve, D. N. et al. External quantum efficiency above 100% in a singlet-exciton-fission-based organic photovoltaic cell. Science 340, 334–337 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Basic Energy Sciences (Award No. DE-FG02-07ER46474).

Author information

Authors and Affiliations

Authors

Contributions

P.B.D., W.C. and P.D.R. made optical diffusion imaging measurements and analysis. W.C., D.N.C. and B.M. fabricated samples and made magnetic field effect measurements, including temperature and doping dependence. M.E.B. made transient electric field measurements. E.H., L.S. and C.K.L. provided valuable theoretical insights and performed Monte Carlo simulations. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to M. A. Baldo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2415 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deotare, P., Chang, W., Hontz, E. et al. Nanoscale transport of charge-transfer states in organic donor–acceptor blends. Nature Mater 14, 1130–1134 (2015). https://doi.org/10.1038/nmat4424

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4424

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing