Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epitaxy of semiconductor–superconductor nanowires

Abstract

Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface plays a key role in determining the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor–metal core–shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and the design of devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al grown with epitaxially matched single-plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and seems to solve the soft-gap problem in superconducting hybrid structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of epitaxial InAs/Al hybrids.
Figure 2: Domain-matched InAs/Al interfaces.
Figure 3: Al layer morphology and asymmetric strain.
Figure 4: Full-shell epitaxial bicrystal match.
Figure 5: Electrical properties of the Al/InAs epitaxial hybrids.
Figure 6: Growth of SE/SU interface barriers.

Similar content being viewed by others

References

  1. Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    Article  Google Scholar 

  2. Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    Article  Google Scholar 

  3. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  CAS  Google Scholar 

  4. Das, A. et al. Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nature Phys. 8, 887–895 (2012).

    CAS  Google Scholar 

  5. Deng, M. T. et al. Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device. Nano Lett. 12, 6414–6419 (2012).

    Article  CAS  Google Scholar 

  6. Churchill, H. O. H. et al. Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover. Phys. Rev. B 87, 241401 (2013).

    Article  Google Scholar 

  7. Stanescu, T. D. & Das Sarma, S. Superconducting proximity effect in semiconductor nanowires. Phys. Rev. B 87, 180504 (2013).

    Article  Google Scholar 

  8. Takei, S., Fregoso, B. M., Hui, H-Y., Lobos, A. M. & Das Sarma, S. Soft superconducting gap in semiconductor Majorana nanowires. Phys. Rev. Lett. 110, 186803 (2013).

    Article  Google Scholar 

  9. Kroemer, H. Quasielectric fields and band offsets: Teaching electrons new tricks. Rev. Mod. Phys. 73, 783–793 (2001).

    Article  CAS  Google Scholar 

  10. Lauhon, L. J., Gudiksen, M. S., Wang, D. & Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57–61 (2002).

    Article  CAS  Google Scholar 

  11. Björk, M. T. et al. One-dimensional steeplechase for electrons realized. Nano Lett. 2, 87–89 (2002).

    Article  Google Scholar 

  12. Heiss, M. et al. Self-assembled quantum dots in a nanowire system for quantum photonics. Nature Mater. 12, 439–444 (2013).

    Article  CAS  Google Scholar 

  13. Wallentin, J. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339, 1057–1060 (2013).

    Article  CAS  Google Scholar 

  14. Borg, M. et al. Vertical III–V nanowire device integration on Si(100). Nano Lett. 14, 1914–1920 (2014).

    Article  CAS  Google Scholar 

  15. Li, M. et al. Bottom-up assembly of large-area nanowire resonator arrays. Nature Nanotech. 3, 88–92 (2008).

    CAS  Google Scholar 

  16. Pilkington, S. J. & Missous, M. The growth of epitaxial aluminum on As containing compound semiconductors. J. Cryst. Growth 196, 1–12 (1999).

    Article  CAS  Google Scholar 

  17. Dick, A. K. et al. Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nature Mater. 3, 380–384 (2004).

    Article  CAS  Google Scholar 

  18. Zheleva, T., Jagannadham, K. & Narayan, J. Epitaxial growth in large-lattice mismatch systems. J. Appl. Phys. 75, 860–871 (1994).

    Article  CAS  Google Scholar 

  19. Krogstrup, P. et al. Advances in the theory of nanowire growth dynamics. J. Phys. D: Appl. Phys. 46, 313001 (2013).

    Article  Google Scholar 

  20. Little, W. A. & Parks, R. D. Observation of quantum periodicity in the transition temperature of a superconducting cylinder. Phys. Rev. Lett. 9, 9–12 (1962).

    Article  Google Scholar 

  21. Liu, Y. et al. Destruction of the global phase coherence in ultrathin, doubly connected superconducting cylinders. Science 294, 2332–2334 (2001).

    Article  CAS  Google Scholar 

  22. Staley, N. E. & Liu, Y. Manipulating superconducting fluctuations by the Little–Parks–de Gennes effect in ultrasmall Al loops. Proc. Natl Acad. Sci. USA 11, 14819–14823 (2012).

    Article  Google Scholar 

  23. Meservey, R. & Tedrow, P. Properties of very thin aluminum films. J. Appl. Phys. 42, 51–55 (1971).

    Article  CAS  Google Scholar 

  24. Chang, W. et al. Hard gap in epitaxial semiconductor–superconductor nanowires. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2014.306 (2015).

  25. Rainis, D. & Loss, D. Majorana qubit decoherence by quasiparticle poisoning. Phys. Rev. B 85, 174533 (2012).

    Article  Google Scholar 

  26. Joyez, P., Lafarge, P., Filipe, A., Esteve, D. & Devoret, M. H. Observation of parity-induced suppression of Josephson tunneling in the superconducting single electron transistor. Phys. Rev. Lett. 72, 2458–2461 (1994).

    Article  CAS  Google Scholar 

  27. De Gennes, P. G. Boundary effects in superconductors. Rev. Mod. Phys. 36, 225–237 (1964).

    Article  CAS  Google Scholar 

  28. Doh, Y. J. et al. Tunable supercurrent through semiconductor nanowires. Science 309, 272–275 (2005).

    Article  CAS  Google Scholar 

  29. Van Dam, J. A., Nazarov, Y. V., Bakkers, E. P. A. M., De Franceschi, S. & Kouwenhoven, L. P. Supercurrent reversal in quantum dots. Nature 442, 667–670 (2006).

    Article  CAS  Google Scholar 

  30. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank B. Wenzell, L. Schulte and J. B. Wagner for TEM sample preparation, W. Zhang for assistance on TEM and EDX analyses, G. Ungaretti for substrate preparation and C. B. Sørensen for technical assistance. We acknowledge financial support by Microsoft Project Q, EU FP7 project SE2ND (no. 271554), the Danish Strategic Research Council, the Danish Advanced Technology Foundation, the Carlsberg Foundation and the Lundbeck Foundation. The Center for Quantum Devices is supported by the Danish National Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

P.K., T.S.J., M.H.M. and J.N. developed materials growth and analysis. N.L.B.Z., W.C., S.M.A., C.M.M. and T.S.J. performed transport measurements. E.J. and N.L.B.Z. performed TEM imaging.

Corresponding authors

Correspondence to P. Krogstrup, J. Nygård or T. S. Jespersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1843 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krogstrup, P., Ziino, N., Chang, W. et al. Epitaxy of semiconductor–superconductor nanowires. Nature Mater 14, 400–406 (2015). https://doi.org/10.1038/nmat4176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4176

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing