Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly confined low-loss plasmons in graphene–boron nitride heterostructures

Abstract

Graphene plasmons were predicted to possess simultaneous ultrastrong field confinement and very low damping, enabling new classes of devices for deep-subwavelength metamaterials, single-photon nonlinearities, extraordinarily strong light–matter interactions and nano-optoelectronic switches. Although all of these great prospects require low damping, thus far strong plasmon damping has been observed, with both impurity scattering and many-body effects in graphene proposed as possible explanations. With the advent of van der Waals heterostructures, new methods have been developed to integrate graphene with other atomically flat materials. In this Article we exploit near-field microscopy to image propagating plasmons in high-quality graphene encapsulated between two films of hexagonal boron nitride (h-BN). We determine the dispersion and plasmon damping in real space. We find unprecedentedly low plasmon damping combined with strong field confinement and confirm the high uniformity of this plasmonic medium. The main damping channels are attributed to intrinsic thermal phonons in the graphene and dielectric losses in the h-BN. The observation and in-depth understanding of low plasmon damping is the key to the development of graphene nanophotonic and nano-optoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device and plasmon imaging with s-SNOM.
Figure 2: Optical signal and plasmon wavelength dependence on carrier density and photon energy.
Figure 3: Extraction of plasmon damping.
Figure 4: Plasmon damping mechanisms.

Similar content being viewed by others

References

  1. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  2. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  3. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nature Phys. 8, 382–386 (2012).

    Article  CAS  Google Scholar 

  4. Brar, V. W. et al. Hybrid surface-phonon–plasmon polariton modes in graphene/monolayer h-BN heterostructures. Nano Lett. 14, 3876–3880 (2014).

    Article  CAS  Google Scholar 

  5. Tomadin, A., Guinea, F. & Polini, M. Generation and morphing of plasmons in graphene superlattices. Phys. Rev. B 90, 161406(R) (2014).

    Article  Google Scholar 

  6. Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nature Photon. 7, 948–957 (2013).

    Article  CAS  Google Scholar 

  7. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  CAS  Google Scholar 

  8. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nature Commun. 5, 5221 (2014).

    Article  CAS  Google Scholar 

  9. Jablan, M., Buljan, H. & Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

    Article  Google Scholar 

  10. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

    Article  CAS  Google Scholar 

  11. Nikitin, A. Y., Guinea, F., García-Vidal, F. J. & Martín-Moreno, L. Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys. Rev. B 84, 161407(R) (2011).

    Article  Google Scholar 

  12. Koppens, F. H. L., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: A platform for strong light-matter interactions. Nano Lett. 11, 3370–3377 (2011).

    Article  CAS  Google Scholar 

  13. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749–758 (2012).

    CAS  Google Scholar 

  14. Yan, H. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech. 7, 330–334 (2012).

    Article  CAS  Google Scholar 

  15. Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photon. 7, 394–399 (2013).

    Article  CAS  Google Scholar 

  16. Brar, V. W., Jang, M. S., Sherrott, M., Lopez, J. J. & Atwater, H. A. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett. 13, 2541–2547 (2013).

    Article  CAS  Google Scholar 

  17. Jang, M. S. et al. Tunable large resonant absorption in a midinfrared graphene Salisbury screen. Phys. Rev. B 90, 165409 (2014).

    Article  Google Scholar 

  18. Tassin, P., Koschny, T. & Soukoulis, C. M. Graphene for terahertz applications. Science 341, 620–621 (2013).

    Article  CAS  Google Scholar 

  19. Low, T. & Avouris, P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8, 1086–1101 (2014).

    Article  CAS  Google Scholar 

  20. García de Abajo, F. J. Graphene plasmonics: Challenges and opportunities. ACS Photonics 1, 135–152 (2014).

    Google Scholar 

  21. Fang, Z. et al. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett. 14, 299–304 (2014).

    Article  CAS  Google Scholar 

  22. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  23. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  CAS  Google Scholar 

  24. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  CAS  Google Scholar 

  25. Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Phil. Trans. R. Soc. Lond. A 362, 787–805 (2004).

    Article  CAS  Google Scholar 

  26. Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).

    Article  Google Scholar 

  27. Chen, J. et al. Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC. Nano Lett. 13, 6210–6215 (2013).

    Article  CAS  Google Scholar 

  28. Fei, Z. et al. Electronic and plasmonic phenomena at graphene grain boundaries. Nature Nanotech. 8, 821–825 (2013).

    Article  CAS  Google Scholar 

  29. Schnell, M., Carney, P. S. & Hillenbrand, R. Synthetic optical holography for rapid nanoimaging. Nature Commun. 5, 3499 (2014).

    Article  CAS  Google Scholar 

  30. Alonso-González, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).

    Article  Google Scholar 

  31. Gerber, J. A., Berweger, S., O’Callahan, B. T. & Raschke, M. B. Phase-resolved surface pasmon interferometry of graphene. Phys. Rev. Lett. 113, 055502 (2014).

    Article  Google Scholar 

  32. Principi, A. et al. Plasmon losses due to electron–phonon scattering: The case of graphene encapsulated in hexagonal boron nitride. Phys. Rev. B 90, 165408 (2014).

    Article  Google Scholar 

  33. Fei, Z. et al. Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

    Article  CAS  Google Scholar 

  34. Xue, J. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Mater. 10, 282–285 (2011).

    Article  CAS  Google Scholar 

  35. Zhang, L., Fu, X. & Yang, J. Excitation of propagating plasmons in semi-infinite graphene layer by free space photons. Commun. Theory Phys. 61, 751–754 (2014).

    Article  CAS  Google Scholar 

  36. Johnson, P. & Christy, R. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  CAS  Google Scholar 

  37. Principi, A., Vignale, G., Carrega, M. & Polini, M. Impact of disorder on Dirac plasmon losses. Phys. Rev. B 88, 121405(R) (2013).

    Article  Google Scholar 

  38. Principi, A., Vignale, G., Carrega, M. & Polini, M. Intrinsic lifetime of Dirac plasmons in graphene. Phys. Rev. B 88, 195405 (2013).

    Article  Google Scholar 

  39. Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008).

    Article  CAS  Google Scholar 

  40. Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

    Article  Google Scholar 

  41. Christensen, J., Manjavacas, A., Thongrattanasiri, S., Koppens, F. H. L. & García de Abajo, F. J. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6, 431–440 (2012).

    Article  CAS  Google Scholar 

  42. Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    Article  CAS  Google Scholar 

  43. Li, Y. et al. Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. Nano Lett. 14, 1573–1577 (2014).

    Article  CAS  Google Scholar 

  44. Nikitin, A. Y., Guinea, F., Garcia-Vidal, F. J. & Martin-Moreno, L. Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys. Rev. B 85, 081405(R) (2012).

    Article  Google Scholar 

  45. Thongrattanasiri, S., Koppens, F. H. L. & García de Abajo, F. J. Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012).

    Article  Google Scholar 

  46. Gullans, M., Chang, D., Koppens, F. H. L., García de Abajo, F. J. & Lukin, M. Single-photon nonlinear optics with graphene plasmons. Phys. Rev. Lett. 111, 247401 (2013).

    Article  CAS  Google Scholar 

  47. Huidobro, P. A., Nikitin, A. Y., González-Ballestero, C., Martín-Moreno, L. & García-Vidal, F. J. Superradiance mediated by graphene surface plasmons. Phys. Rev. B 85, 155438 (2012).

    Article  Google Scholar 

  48. Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of graphene at finite doping. New J. Phys. 8, 318 (2006).

    Article  Google Scholar 

  49. Hwang, E. H. & Das Sarma, S. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007).

    Article  Google Scholar 

  50. Principi, A., Polini, M. & Vignale, G. Linear response of doped graphene sheets to vector potentials. Phys. Rev. B 80, 075418 (2009).

    Article  Google Scholar 

  51. Cai, Y., Zhang, L., Zeng, Q., Cheng, L. & Xu, Y. Infrared reflectance spectrum of BN calculated from first principles. Solid State Commun. 141, 262–266 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

It is a great pleasure to thank J. D. Caldwell, J. García de Abajo, A. Tomadin and L. Levitov for many useful discussions. This work used open source software (www.matplotlib.org, www.python.org). F.H.L.K. acknowledges support by the Fundacio Cellex Barcelona, the ERC Career integration grant 294056 (GRANOP), the ERC starting grant 307806 (CarbonLight), and support by EU project GRASP (FP7-ICT-2013-613024-GRASP). F.H.L.K., M.P. and R.H. acknowledge support by the EU under Graphene Flagship (contract no. CNECT-ICT-604391). A.P. and G.V. acknowledge DOE grant DE-FG02-05ER46203 and a Research Board Grant at the University of Missouri. M.P. and M.C. acknowledge support by the Italian Ministry of Education, Universities and Research (MIUR) through the programme ‘FIRB – Futuro in Ricerca’, Project PLASMOGRAPH (Grant No. RBFR10M5BT) and Project HybridNanoDev (Grant No. RBFR1236VV). M.P. also acknowledges support by the MIUR through the programme ‘Progetti Premiali 2012’ – Project ABNANOTECH. R.H. acknowledges support by the ERC starting grant 258461 (TERATOMO) and the Spanish Ministry of Economy and Competitiveness (National Project MAT2012-36580). Y.G. and J.H. acknowledge support from the US Office of Naval Research N00014-13-1-0662.

Author information

Authors and Affiliations

Authors

Contributions

A.W. and M.B.L. performed the experiments, discussed the results and wrote the manuscript. Y.G. fabricated the samples. A.P., M.P., G.V. and M.C. provided the theory on different loss mechanisms. P.A-G. helped with measurements. K.W. and T.T. synthesized the h-BN samples. G.V., M.P., J.H., R.H. and F.H.L.K. supervised the work, discussed the results and co-wrote the manuscript. All authors contributed to the scientific discussion and manuscript revisions.

Corresponding author

Correspondence to Frank H. L. Koppens.

Ethics declarations

Competing interests

R.H. is co-founder of Neaspec GmbH, a company producing scattering-type scanning near-field optical microscope systems such as the ones used in this study. All other authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1045 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woessner, A., Lundeberg, M., Gao, Y. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nature Mater 14, 421–425 (2015). https://doi.org/10.1038/nmat4169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing