Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrasoft microgels displaying emergent platelet-like behaviours

Abstract

Efforts to create platelet-like structures for the augmentation of haemostasis have focused solely on recapitulating aspects of platelet adhesion1; more complex platelet behaviours such as clot contraction2 are assumed to be inaccessible to synthetic systems. Here, we report the creation of fully synthetic platelet-like particles (PLPs) that augment clotting in vitro under physiological flow conditions and achieve wound-triggered haemostasis and decreased bleeding times in vivo in a traumatic injury model. PLPs were synthesized by combining highly deformable microgel particles with molecular-recognition motifs identified through directed evolution. In vitro and in silico analyses demonstrate that PLPs actively collapse fibrin networks, an emergent behaviour that mimics in vivo clot contraction. Mechanistically, clot collapse is intimately linked to the unique deformability and affinity of PLPs for fibrin fibres, as evidenced by dissipative particle dynamics simulations. Our findings should inform the future design of a broader class of dynamic, biosynthetic composite materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PLP design and characterization.
Figure 2: PLPs induce clotting in vitro.
Figure 3: PLPs induce clot collapse in vitro.
Figure 4: PLPs decrease bleeding time in vivo, and home to site of injury.

Similar content being viewed by others

References

  1. Modery-Pawlowski, C. L. et al. Approaches to synthetic platelet analogs. Biomaterials 34, 526–541 (2013).

    Article  CAS  Google Scholar 

  2. Clemetson, K. J. Platelets and primary haemostasis. Thrombosis Res. 129, 220–224 (2012).

    Article  CAS  Google Scholar 

  3. Evans, J. A. et al. Epidemiology of traumatic deaths: Comprehensive population-based assessment. World J. Surg. 34, 158–163 (2010).

    Article  Google Scholar 

  4. McGwin, G. Jr et al. Reassessment of the tri-modal mortality distribution in the presence of a regional trauma system. J. Trauma 66, 526–530 (2009).

    Article  Google Scholar 

  5. Geeraedts, L. M. Jr, Kaasjager, H. A., van Vugt, A. B. & Frolke, J. P. Exsanguination in trauma: A review of diagnostics and treatment options. Injury 40, 11–20 (2009).

    Article  Google Scholar 

  6. Granville-Chapman, J., Jacobs, N. & Midwinter, M. J. Pre-hospital haemostatic dressings: A systematic review. Injury 42, 447–459 (2011).

    Article  CAS  Google Scholar 

  7. Fries, D. & Martini, W. Z. Role of fibrinogen in trauma-induced coagulopathy. Br. J. Anaesth. 105, 116–121 (2010).

    Article  CAS  Google Scholar 

  8. Gao, J. F. & Frisken, B. J. Cross-linker-free N-isopropylacrylamide gel nanospheres. Langmuir 19, 5212–5216 (2003).

    Article  CAS  Google Scholar 

  9. Hendrickson, G. R. & Lyon, L. A. Microgel translocation through pores under confinement. Angew. Chem. Int. Ed. 49, 2193–2197 (2010).

    Article  CAS  Google Scholar 

  10. Raut, S. & Gaffney, P. J. Evaluation of the fibrin binding profile of two anti-fibrin monoclonal antibodies. Thromb. Haemost. 76, 56–64 (1996).

    CAS  Google Scholar 

  11. Kolodziej, A. F. et al. Fibrin specific peptides derived by phage display: Characterization of peptides and conjugates for imaging. Bioconjug. Chem. 23, 548–556 (2012).

    Article  CAS  Google Scholar 

  12. Scheefers-Borchel, U., Muller-Berghaus, G., Fuhge, P., Eberle, R. & Heimburger, N. Discrimination between fibrin and fibrinogen by a monoclonal antibody against a synthetic peptide. Proc. Natl Acad. Sci. USA 82, 7091–7095 (1985).

    Article  CAS  Google Scholar 

  13. Lee, C. M., Iorno, N., Sierro, F. & Christ, D. Selection of human antibody fragments by phage display. Nature Protoc. 2, 3001–3008 (2007).

    Article  CAS  Google Scholar 

  14. Myers, D. R. et al. Endothelialized microfluidics for studying microvascular interactions in hematologic diseases. J. Vis. Exp. 64, e3958 (2012).

    Google Scholar 

  15. Guzzetta, N. A. et al. The impact of aprotinin on postoperative renal dysfunction in neonates undergoing cardiopulmonary bypass: A retrospective analysis. Anesth. Analg. 108, 448–455 (2009).

    Article  CAS  Google Scholar 

  16. Thomas, S. G., Calaminus, S. D., Auger, J. M., Watson, S. P. & Machesky, L. M. Studies on the actin-binding protein HS1 in platelets. BMC Cell Biol. 8, 46 (2007).

    Article  Google Scholar 

  17. Suzuki-Inoue, K. et al. Involvement of Src kinases and PLCγ2 in clot retraction. Thromb. Res. 120, 251–258 (2007).

    Article  CAS  Google Scholar 

  18. Jackson, S. P., Nesbitt, W. S. & Westein, E. Dynamics of platelet thrombus formation. J. Thromb. Haemost. 7 (suppl. 1), 17–20 (2009).

    Article  CAS  Google Scholar 

  19. Masoud, H. & Alexeev, A. Controlled release of nanoparticles and macromolecules from responsive microgel capsules. ACS Nano 6, 212–219 (2012).

    Article  CAS  Google Scholar 

  20. Bertram, J. P. et al. Intravenous hemostat: Nanotechnology to halt bleeding. Sci. Transl. Med. 1, 11ra22 (2009).

    Article  Google Scholar 

  21. Fuglsang, J. et al. Platelet activity and in vivo arterial thrombus formation in rats with mild hyperhomocysteinaemia. Blood Coagul. Fibrinolysis 13, 683–689 (2002).

    Article  CAS  Google Scholar 

  22. Ersoy, G. et al. Hemostatic effects of microporous polysaccharide hemosphere in a rat model with severe femoral artery bleeding. Adv. Therapy 24, 485–492 (2007).

    Article  CAS  Google Scholar 

  23. Okano, T., Bae, Y. H. & Kim, S. W. in In Modulated Control Release System (ed Kost, J.) 17–46 (CRC Press, 1990).

    Google Scholar 

  24. Tsuchida, E. & Abe, K. Advances in Polymer Science Vol. 45, 1–119 (Springer, 1982).

    Google Scholar 

  25. Shibayama, M. & Tanaka, T. in Responsive Gels: Volume Transitions 1 Vol. 109 (ed Dusek, K.) 1–62 (Springer, 1993).

    Book  Google Scholar 

  26. Alvarado, J., Sheinman, M., Sharma, A., MacKintosh, F. & Koenderink, G. Molecular motors robustly drive active gels to a critically connected state. Nature Phys. 9, 591–597 (2013).

    Article  CAS  Google Scholar 

  27. Tsai, M. et al. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. J. Clin. Invest. 122, 408–418 (2012).

    Article  CAS  Google Scholar 

  28. Groot, R. D. & Warren, P. B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423–4435 (1997).

    Article  CAS  Google Scholar 

  29. Hoogerbrugge, P. J. & Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155–160 (1992).

    Article  Google Scholar 

  30. Espanol, P. & Warren, P. Statistical-mechanics of dissipative particle dynamics. Europhys. Lett. 30, 191–196 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank L. Tucker and S. Pitrowski Lees for assistance with in vivo studies, A. Winburn for assistance with particle synthesis, Z. Meng for AFM images of ULC μgels films, and Y. Sakuri, Y. Qui and D. Myers for assistance with platelet-poor plasma isolation. Funding sources: NIH (HHSN268201000043C, R21EB013743 and R01EB011566), John and Mary Brock Discovery Research Fund, and DoD (W81XWH1110306) to T.H.B.; NIH (R21EB013743) and DoD (W81XWH1110306) to L.A.L.; American Heart Association Postdoctoral Fellowship to A.C.B.; NSF GRF to V.S.; NSF CAREER Award (DMR-1255288) to A.A.; NIH (R01HL121264, U54 HL11230 and NSF CAREER Award (1150235) to W.A.L.

Author information

Authors and Affiliations

Authors

Contributions

A.C.B., S.E.S. and B.A., experimental design, data analysis and manuscript; R.T.H., K.S.D., E.S.H. and V.S., experimental design and data analysis; A.A., simulations, data analysis and manuscript; N.G., W.A.L., L.A.L. and T.H.B., experimental design and manuscript.

Corresponding authors

Correspondence to L. Andrew Lyon or Thomas H. Barker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4765 kb)

Supplementary Movie 1

Supplementary Movie 1 (AVI 1889 kb)

Supplementary Movie 2

Supplementary Movie 2 (AVI 1142 kb)

Supplementary Movie 3

Supplementary Movie 3 (AVI 3105 kb)

Supplementary Movie 4

Supplementary Movie 4 (AVI 1746 kb)

Supplementary Movie 5

Supplementary Movie 5 (AVI 3402 kb)

Supplementary Movie 6

Supplementary Movie 6 (MOV 6166 kb)

Supplementary Movie 7

Supplementary Movie 7 (MOV 6361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, A., Stabenfeldt, S., Ahn, B. et al. Ultrasoft microgels displaying emergent platelet-like behaviours. Nature Mater 13, 1108–1114 (2014). https://doi.org/10.1038/nmat4066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4066

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing