Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide

Abstract

Recent progress in large-area synthesis of monolayer molybdenum disulphide, a new two-dimensional direct-bandgap semiconductor, is paving the way for applications in atomically thin electronics. Little is known, however, about the microstructure of this material. Here we have refined chemical vapour deposition synthesis to grow highly crystalline islands of monolayer molybdenum disulphide up to 120 μm in size with optical and electrical properties comparable or superior to exfoliated samples. Using transmission electron microscopy, we correlate lattice orientation, edge morphology and crystallinity with island shape to demonstrate that triangular islands are single crystals. The crystals merge to form faceted tilt and mirror twin boundaries that are stitched together by lines of 8- and 4-membered rings. Density functional theory reveals localized mid-gap states arising from these 8–4 defects. We find that mirror twin boundaries cause strong photoluminescence quenching whereas tilt boundaries cause strong enhancement. Meanwhile, mirror twin boundaries slightly increase the measured in-plane electrical conductivity, whereas tilt boundaries slightly decrease the conductivity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Large-grain MoS2 growth.
Figure 2: Diffraction imaging of crystal orientation and edge terminations.
Figure 3: Tilt and mirror twin grain structures.
Figure 4: Grain boundary atomic structure.
Figure 5: Optical and electronic properties of mirror and tilt boundaries.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  2. Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    Article  CAS  Google Scholar 

  3. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  4. Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I. I. & Batzill, M. An extended defect in graphene as a metallic wire. Nature Nanotech. 5, 326–329 (2010).

    Article  CAS  Google Scholar 

  5. Tsen, A. W. et al. Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science 336, 1143–1146 (2012).

    Article  CAS  Google Scholar 

  6. Grantab, R., Shenoy, V. B. & Ruoff, R. S. Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330, 946–948 (2010).

    Article  CAS  Google Scholar 

  7. Ruiz-Vargas, C. S. et al. Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett. 11, 2259–2263 (2011).

    Article  CAS  Google Scholar 

  8. Liu, Y. & Yakobson, B. I. Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett. 10, 2178–2183 (2010).

    Article  CAS  Google Scholar 

  9. Yazyev, O. V. & Louie, S. G. Topological defects in graphene: Dislocations and grain boundaries. Phys. Rev. B 81, 195420 (2010).

    Article  Google Scholar 

  10. Yu, Q. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Mater. 10, 443–449 (2011).

    Article  CAS  Google Scholar 

  11. Huang, P. Y., Meyer, J. C. & Muller, D. A. From atoms to grains: Transmission electron microscopy of graphene. Mater. Res. Soc. Bull. 37, 1214–1221 (2012).

    Article  CAS  Google Scholar 

  12. Brontvein, O. et al. New high-temperature Pb-catalyzed synthesis of inorganic nanotubes. J. Am. Chem. Soc. 134, 16379–16386 (2012).

    Article  CAS  Google Scholar 

  13. Li, Y. G. et al. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).

    Article  CAS  Google Scholar 

  14. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 5111–5116 (2011).

    Article  CAS  Google Scholar 

  15. Botello-Mendez, A. R., Lopez-Urias, F., Terrones, M. & Terrones, H. Metallic and ferromagnetic edges in molybdenum disulphide nanoribbons. Nanotechnology 20, 325703 (2009).

    Article  CAS  Google Scholar 

  16. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  17. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  18. Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapour deposition. Adv. Mater. 24, 2320–2325 (2012).

    Article  CAS  Google Scholar 

  19. Zhan, Y. J., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

    Article  CAS  Google Scholar 

  20. Liu, K-K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

    Article  CAS  Google Scholar 

  21. Shi, Y. M. et al. van der Waals epitaxy of MoS2 layers using graphene As growth templates. Nano Lett. 12, 2784–2791 (2012).

    Article  CAS  Google Scholar 

  22. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  23. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  24. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    Article  CAS  Google Scholar 

  25. Yin, Z. et al. Single-layer MoS2 phototransistors. ACS nano 6, 74–80 (2012).

    Article  CAS  Google Scholar 

  26. Fontana, M. et al. Photovoltaic effect in gated MoS2 Schottky junctions. Preprint at http://arxiv.org/arXiv:1206.6125 (2012).

  27. Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010).

    Article  CAS  Google Scholar 

  28. Komsa, H-P. et al. Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).

    Article  Google Scholar 

  29. Brown, L. et al. Twinning and twisting of tri-and bi-layer graphene. Nano Lett. 12, 1609–1615 (2012).

    Article  CAS  Google Scholar 

  30. Hirsch, P., Howie, A., Nicholson, R., Pashley, D. W. & Whelan, M. J. Electron Microscopy of Thin Crystals (Kreiger, 1965).

    Google Scholar 

  31. Brivio, J., Alexander, D. T. L. & Kis, A. Ripples and layers in ultrathin MoS2 membranes. Nano Lett. 11, 5148–5153 (2011).

    Article  CAS  Google Scholar 

  32. Spence, J. C. H. & Zuo, J. M. Electron Microdiffraction (Plenum, 1992).

    Book  Google Scholar 

  33. Lauritsen, J. V. et al. Size-dependent structure of MoS2 nanocrystals. Nature Nanotech. 2, 53–58 (2007).

    Article  CAS  Google Scholar 

  34. Byskov, L., Nørskov, J., Clausen, B. & Topsøe, H. Edge termination of MoS2 and CoMoS catalyst particles. Catal Lett. 64, 95–99 (2000).

    Article  CAS  Google Scholar 

  35. Robertson, A. W. et al. Atomic structure of interconnected few-layer graphene domains. ACS Nano 5, 6610–6618 (2011).

    Article  CAS  Google Scholar 

  36. Howe, J. M. Interfaces in Materials: Atomic Structure, Thermodynamics and Kinetics of Solid-vapour, Solid–Liquid and Solid–Solid Interfaces (Wiley, 1997).

    Google Scholar 

  37. Zhang, H., Ha, D-H., Hovden, R., Kourkoutis, L. F. & Robinson, R. D. Controlled synthesis of uniform cobalt phosphide hyperbranched nanocrystals using tri-n-octylphosphine oxide as a phosphorus source. Nano Lett. 11, 188–197 (2011).

    Article  CAS  Google Scholar 

  38. Najmaei, S. et al. Vapor phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Mater. Preprint at http://arxiv.org/arXiv:1301.2812 (2013).

  39. Zou, X., Liu, Y. & Yakobson, B. I. Predicting dislocations and grain boundaries in two-dimensional metal-disulphides from the first principles. Nano Lett. 13, 253–258 (2012).

    Article  Google Scholar 

  40. Kim, K. et al. Grain boundary mapping in polycrystalline graphene. ACS Nano 5, 2142–2146 (2011).

    Article  CAS  Google Scholar 

  41. Paolo, G. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  42. Pantelides, S. T. The electronic structure of impurities and other point defects in semiconductors. Rev. Mod. Phys. 50, 797–858 (1978).

    Article  CAS  Google Scholar 

  43. Pankove, J. I. Optical Processes in Semiconductors (Prentice-Hall, 1971).

    Google Scholar 

  44. Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nature Mater. 12, 207–211 (2013).

    Article  CAS  Google Scholar 

  45. Scalise, E., Houssa, M., Pourtois, G., Afanas’ev, V. V. & Stesmans, A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2 . Nano Res. 5, 43–48 (2012).

    Article  CAS  Google Scholar 

  46. Late, D. J., Liu, B., Matte, H. S., Dravid, V. P. & Rao, C. N. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6, 5635–5641 (2012).

    Article  CAS  Google Scholar 

  47. Qiu, H. et al. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 100, 123104 (2012).

    Article  Google Scholar 

  48. Das, S., Chen, H-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2012).

    Article  Google Scholar 

  49. Yoon, Y., Ganapathi, K. & Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768–3773 (2011).

    Article  CAS  Google Scholar 

  50. Gutiérrez, H. R. et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. http://dx.doi.org/10.1021/nl3026357 (2012).

Download references

Acknowledgements

Overall project coordination, sample growth, and electrical and optical characterization were supported as part of the Center for Re-Defining Photovoltaic Efficiency Through Molecular-Scale Control, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under Award DE-SC0001085. A.M.v.d.Z was supported by the EFRC as a research fellow. Electron microscopy was performed at and supported by the Cornell Center for Materials Research, an NSF MRSEC (NSF DMR-1120296). P.Y.H. was supported under the National Science Foundation Graduate Research Fellowship Grant No. DGE-0707428. D.A.C. was supported by a Columbia University Presidential fellowship and a GEM PhD Fellowship sponsored by the Center for Functional Nanomaterials at Brookhaven National Lab. T.C.B. was supported under the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), administered by ORISE-ORAU under Contract No. DE-AC05-06OR23100. The authors thank S. Gondarenko, R. Hovden, I. Meric, J. Ravichandran, L. Wang, J. Richmond-Decker and P. Kim for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.M.v.d.Z. supervised and coordinated all aspects of the project. MoS2 growth was carried out by D.A.C. and A.M.v.d.Z. Electrical characterization and analysis was carried out by A.M.v.d.Z., D.A.C. and G-H.L. under the supervision of J.C.H. Electron microscopy and data analysis were carried out by P.Y.H. with D.A.M.’s supervision. Optical spectroscopy and data analysis were carried out by A.M.v.d.Z. and Y.Y. under T.F.H.’s supervision. DFT simulations were carried out by T.C.B. under D.R.R.’s supervision. A.M.v.d.Z., P.Y.H., D.A.C., T.C.B., Y.Y., T.F.H., D.A.M. and J.C.H. wrote the paper.

Corresponding author

Correspondence to Arend M. van der Zande.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2376 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Zande, A., Huang, P., Chenet, D. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Mater 12, 554–561 (2013). https://doi.org/10.1038/nmat3633

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3633

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing