Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Janus cobalt-based catalytic material for electro-splitting of water

Abstract

The future of energy supply depends on innovative breakthroughs regarding the design of cheap, sustainable and efficient systems for the conversion and storage of renewable energy sources. The production of hydrogen through water splitting seems a promising and appealing solution. We found that a robust nanoparticulate electrocatalytic material, H2–CoCat, can be electrochemically prepared from cobalt salts in a phosphate buffer. This material consists of metallic cobalt coated with a cobalt-oxo/hydroxo-phosphate layer in contact with the electrolyte and mediates H2 evolution from neutral aqueous buffer at modest overpotentials. Remarkably, it can be converted on anodic equilibration into the previously described amorphous cobalt oxide film (O2–CoCat or CoPi) catalysing O2 evolution. The switch between the two catalytic forms is fully reversible and corresponds to a local interconversion between two morphologies and compositions at the surface of the electrode. After deposition, the noble-metal-free coating thus functions as a robust, bifunctional and switchable catalyst.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linear voltammetry experiments.
Figure 2: Scanning electrochemical micrographs.
Figure 3: Compared HER properties of H2–CoCat and metallic cobalt.
Figure 4: XPS characterization.
Figure 5: Fourier-transformed EXAFS spectra collected at the Co K edge.
Figure 6: Electrocatalytic H2 and O2 evolution catalysed by the CoCat film.

Similar content being viewed by others

References

  1. Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2007); 104, 20142 (2007).

    Article  Google Scholar 

  2. Armaroli, N. & Balzani, V. The hydrogen issue. ChemSusChem 4, 21–36 (2011).

    Article  CAS  Google Scholar 

  3. Gordon, R. B., Bertram, M. & Graedel, T. E. Metal stocks and sustainability. Proc. Natl Acad. Sci. USA 103, 1209–1214 (2006).

    Article  CAS  Google Scholar 

  4. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article  CAS  Google Scholar 

  5. Yin, Q. S. et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328, 342–345 (2010).

    Article  CAS  Google Scholar 

  6. Risch, M. et al. Cobalt-oxo core of a water-oxidizing catalyst film. J. Am. Chem. Soc. 131, 6936–6937 (2009).

    Article  CAS  Google Scholar 

  7. Dau, H. et al. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. ChemCatChem 2, 724–761 (2010).

    Article  CAS  Google Scholar 

  8. Jiao, F. & Frei, H. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ. Sci. 3, 1018–1027 (2010).

    Article  CAS  Google Scholar 

  9. Shevchenko, D., Anderlund, M. F., Thapper, A. & Styring, S. Photochemical water oxidation with visible light using a cobalt containing catalyst. Energy Environ. Sci. 4, 1284–1287 (2011).

    Article  CAS  Google Scholar 

  10. Wee, T-L. et al. Photochemical synthesis of a water oxidation catalyst based on cobalt nanostructures. J. Am. Chem. Soc. 133, 16742–16745 (2011).

    Article  CAS  Google Scholar 

  11. Chou, N. H., Ross, P. N., Bell, A. T. & Don Tilley, T. Comparison of cobalt-based nanoparticles as electrocatalysts for water oxidation. ChemSusChem 11, 1566–1569 (2011).

    Article  Google Scholar 

  12. Dinca, M., Surendranath, Y. & Nocera, D. G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl Acad. Sci. USA 107, 10337–10341 (2010).

    Article  CAS  Google Scholar 

  13. Zaharieva, I. et al. Synthetic manganese-calcium oxides mimic the water-oxidizing complex of photosynthesis functionally and structurally. Energy Environ. Sci. 4, 2400–2408 (2011).

    Article  CAS  Google Scholar 

  14. Tran, P. D. et al. Noncovalent modification of carbon nanotubes with pyrene-functionalized nickel complexes: Carbon monoxide tolerant catalysts for hydrogen evolution and uptake. Angew. Chem. Int. Ed. 50, 1371–1374 (2011).

    Article  CAS  Google Scholar 

  15. Le Goff, A. et al. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326, 1384–1387 (2009).

    Article  CAS  Google Scholar 

  16. Merki, D. & Hu, X. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 4, 3878–3888 (2011).

    Article  CAS  Google Scholar 

  17. Hou, Y. D. et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nature Mater. 10, 434–438 (2011).

    Article  CAS  Google Scholar 

  18. Artero, V., Chavarot-Kerlidou, M. & Fontecave, M. Splitting water with cobalt. Angew. Chem. Int. Ed. 50, 7238–7266 (2011).

    Article  CAS  Google Scholar 

  19. Baffert, C., Artero, V. & Fontecave, M. Cobaloximes as functional models for hydrogenases. 2. proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media. Inorg. Chem. 46, 1817–1824 (2007).

    Article  CAS  Google Scholar 

  20. Jacques, P-A., Artero, V., Pécaut, J. & Fontecave, M. Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages. Proc. Natl Acad. Sci. USA 106, 20627–20632 (2009).

    Article  CAS  Google Scholar 

  21. Razavet, M., Artero, V. & Fontecave, M. Proton electroreduction catalyzed by cobaloximes: Functional models for hydrogenases. Inorg. Chem. 44, 4786–4795 (2005).

    Article  CAS  Google Scholar 

  22. Dempsey, J. L., Winkler, J. R. & Gray, H. B. Mechanism of H2 evolution by a photogenerated hydridocobaloxime. J. Am. Chem. Soc. 132, 16774–16776 (2010).

    Article  CAS  Google Scholar 

  23. Hu, X. L., Cossairt, B. M., Brunschwig, B. S., Lewis, N. S. & Peters, J. C. Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes. Chem. Commun. 4723–4725 (2005).

  24. Hu, X., Brunschwig, B. S. & Peters, J. C. Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. J. Am. Chem. Soc. 129, 8988–8998 (2007).

    Article  CAS  Google Scholar 

  25. Fourmond, V., Jacques, P. A., Fontecave, M. & Artero, V. H2 evolution and molecular electrocatalysts: Determination of overpotentials and effect of homoconjugation. Inorg. Chem. 49, 10338–10347 (2010).

    Article  CAS  Google Scholar 

  26. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  Google Scholar 

  27. Reece, S. Y. et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011).

    Article  CAS  Google Scholar 

  28. McKone, J. R. et al. Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 4, 3573–3583 (2011).

    Article  CAS  Google Scholar 

  29. Sun, Y. et al. Molecular cobalt pentapyridine catalysts for generating hydrogen from water. J. Am. Chem. Soc. 133, 9212–9215 (2011).

    Article  CAS  Google Scholar 

  30. Chen, W-F. et al. Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew. Chem. Int. Ed. 51, 6131–6135 (2012).

    Article  CAS  Google Scholar 

  31. Soto, A. B., Arce, E. M., Palomar-Pardave, M. & Gonzalez, I. Electrochemical nucleation of cobalt onto glassy carbon electrode from ammonium chloride solutions. Electrochim. Acta 41, 2647–2655 (1996).

    Article  CAS  Google Scholar 

  32. Cui, C. Q., Jiang, S. P. & Tseung, A. C. C. Electrodeposition of cobalt from aqueous chloride solutions. J. Electrochem. Soc. 137, 3418–3423 (1990).

    Article  CAS  Google Scholar 

  33. Pantani, O., Anxolabehere-Mallart, E., Aukauloo, A. & Millet, P. Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media. Electrochem. Commun. 9, 54–58 (2007).

    Article  CAS  Google Scholar 

  34. Berben, L. A. & Peters, J. C. Hydrogen evolution by cobalt tetraimine catalysts adsorbed on electrode surfaces. Chem. Commun. 46, 398–400 (2010).

    Article  CAS  Google Scholar 

  35. Anxolabehere-Mallart, E. et al. Boron-capped tris(glyoximato) cobalt clathrochelate as a precursor for the electrodeposition of nanoparticles catalyzing H2 evolution in water. J. Am. Chem. Soc. 134, 6104–6107 (2012).

    Article  CAS  Google Scholar 

  36. Hu, G-R., Deng, X-R., Peng, Z-D. & Du, K. Comparison of AlPO4 and Co3(PO4)2− coated LiNi0.8Co0.2O2 cathode materials for Li-ion battery. Electrochim. Acta 53, 2567–2573 (2008).

    Article  CAS  Google Scholar 

  37. Yang, J., Liu, H., Martens, W. N. & Frost, R. L. Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J. Phys. Chem. C 114, 111–119 (2009).

    Article  Google Scholar 

  38. Kanan, M. W. et al. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132, 13692–13701 (2010).

    Article  CAS  Google Scholar 

  39. Trasatti, S. Work function, electronegativity, and electrochemical behavior of metals. 3. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. 39, 163–184 (1972).

    Article  CAS  Google Scholar 

  40. Miles, M. H. Evaluation of electrocatalysts for water electrolysis in alkaline-solutions. J. Electroanal. Chem. 60, 89–96 (1975).

    Article  CAS  Google Scholar 

  41. Khaselev, O. & Turner, J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998).

    Article  CAS  Google Scholar 

  42. Rocheleau, R. E., Miller, E. L. & Misra, A. High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes. Energy Fuels 12, 3–10 (1998).

    Article  CAS  Google Scholar 

  43. Yamada, Y. et al. One chip photovoltaic water electrolysis device. Int. J. Hydrogen Energy 28, 1167–1169 (2003).

    Article  CAS  Google Scholar 

  44. Sivula, K., Le Formal, F. & Gratzel, M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4, 432–449 (2011).

    Article  CAS  Google Scholar 

  45. Paracchino, A., Laporte, V., Sivula, K., Gratzel, M. & Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nature Mater. 10, 456–461 (2011).

    Article  CAS  Google Scholar 

  46. Pijpers, J. J. H., Winkler, M. T., Surendranath, Y., Buonassisi, T. & Nocera, D. G. Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst. Proc. Natl Acad. Sci. USA 108, 10056–10061 (2011).

    Article  CAS  Google Scholar 

  47. Zhong, D. K., Cornuz, M., Sivula, K., Graetzel, M. & Gamelin, D. R. Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ. Sci. 4, 1759–1764 (2011).

    Article  CAS  Google Scholar 

  48. Young, E. R., Nocera, D. G. & Bulovic, V. Direct formation of a water oxidation catalyst from thin-film cobalt. Energy Environ. Sci. 3, 1726–1728 (2010).

    Article  CAS  Google Scholar 

  49. Maeda, K., Higashi, M., Lu, D. L., Abe, R. & Domen, K. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 132, 5858–5868 (2010).

    Article  CAS  Google Scholar 

  50. Maeda, K. et al. Photocatalyst releasing hydrogen from water—enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440, 295–295 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Jegou for XPS measurements, B. Sartor for the design and construction of a specific electrochemical cell allowing working with FTO-coated glass electrodes, P. Chernev, K. Klingan, M. Risch and I. Zaharieva (FU Berlin) as co-workers during the XAS measurements at the KMC-1 beamline of the BESSY synchrotron (Helmholtz Zentrum Berlin, HZB) which were technically supported by F. Schäfers and M. Mertin (HZB). Financial support by the Nanosciences Program of CEA (Grant Nanocat’ O2), the UniCat cluster of excellence (Unifying Concepts in Catalysis, Berlin) and the European Commission (7th Framework Programme, SOLAR-H2, grant # 212508) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

V.A. and M.F. designed research; S.C., V.F., P-A.J., J.F., V.I. and V.A. performed research; J.H. and H.D. performed XAS studies; B.J. and S.P. performed XPS studies; L.G. and S.C. performed SEM measurements and surface EDX analysis; V.A. wrote the paper.

Corresponding author

Correspondence to Vincent Artero.

Ethics declarations

Competing interests

A European patent application (EP-12352001) has been filed for the preparation, characterization and properties of H2-CoCat.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobo, S., Heidkamp, J., Jacques, PA. et al. A Janus cobalt-based catalytic material for electro-splitting of water. Nature Mater 11, 802–807 (2012). https://doi.org/10.1038/nmat3385

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3385

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing