Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-crystal organic charge-transfer interfaces probed using Schottky-gated heterostructures

Abstract

Organic semiconductors based on small conjugated molecules generally behave as insulators when undoped, but the heterointerfaces of two such materials can show electrical conductivity as large as in a metal. Although charge transfer is commonly invoked to explain the phenomenon, the details of the process and the nature of the interfacial charge carriers remain largely unexplored. Here we use Schottky-gated heterostructures to probe the conducting layer at the interface between rubrene and PDIF-CN2 single crystals. Gate-modulated conductivity measurements demonstrate that interfacial transport is due to electrons, whose mobility exhibits band-like behaviour from room temperature to ~150 K, and remains as high as ~1 cm2 V−1 s−1 at 30 K for the best devices. The electron density decreases linearly with decreasing temperature, an observation that can be explained quantitatively on the basis of the heterostructure band diagram. These results elucidate the electronic structure of rubrene/PDIF-CN2 interfaces and show the potential of Schottky-gated organic heterostructures for the investigation of transport in molecular semiconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rubrene–PDIF-CN2 Schottky-gated heterostructures.
Figure 2: Characterization of the Schottky gate.
Figure 3: In-plane transport characteristics of Schottky-gated rubrene/PDIF-CN2 interfaces.
Figure 4: Temperature dependence of electron mobility and density at rubrene/PDIF-CN2 interfaces.
Figure 5: Energy level alignment of organic interfaces and band diagram of rubrene–PDIF-CN2 Schottky-gated heterostructures.

Similar content being viewed by others

References

  1. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  2. Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

    Article  CAS  Google Scholar 

  3. Koch, N. Organic electronic devices and their functional interfaces. ChemPhysChem 8, 1438–1455 (2007).

    Article  CAS  Google Scholar 

  4. Harada, K. et al. Organic homojunction diodes with a high built-in potential: Interpretation of the current–voltage characteristics by a generalized Einstein relation. Phys. Rev. Lett. 94, 036601 (2005).

    Article  CAS  Google Scholar 

  5. Hamwi, S., Riedl, T. & Kowalsky, W. An organic pin homojunction as ultra violet light emitting diode and visible-blind photodiode in one. Appl. Phys. Lett. 99, 053301 (2011).

    Article  Google Scholar 

  6. Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986).

    Article  CAS  Google Scholar 

  7. Peumans, P. & Forrest, S. R. Very-high-efficiency double-heterostructure copper phthalocyanine /C60 photovoltaic cells. Appl. Phys. Lett. 79, 126–128 (2001).

    Article  CAS  Google Scholar 

  8. Armstrong, N. R. et al. Organic/organic’ heterojunctions: Organic light emitting diodes and organic photovoltaic devices. Macromol. Rapid Commun. 30, 717–731 (2009).

    Article  CAS  Google Scholar 

  9. Dodabalapur, A., Katz, H. E., Torsi, L. & Haddon, R. C. Organic heterostructure field-effect transistors. Science 269, 1560–1562 (1995).

    Article  CAS  Google Scholar 

  10. Rost, C., Gundlach, D. J., Karg, S. & Rieß, W. Ambipolar organic field-effect transistor based on an organic heterostructure. J. Appl. Phys. 95, 5782–5787 (2004).

    Article  CAS  Google Scholar 

  11. Wang, J., Wang, H., Yan, X., Huang, H. & Yan, D. Organic heterojunction and its application for double channel field-effect transistors. Appl. Phys. Lett. 87, 093507 (2005).

    Article  Google Scholar 

  12. Wang, H. et al. Ambipolar organic field-effect transistors with air stability, high mobility, and balanced transport. Appl. Phys. Lett. 88, 133508 (2006).

    Article  Google Scholar 

  13. Dinelli, F. et al. High-mobility ambipolar transport in organic light-emitting transistors. Adv. Mater. 18, 1416–1420 (2006).

    Article  CAS  Google Scholar 

  14. Muccini, M. A bright future for organic field-effect transistors. Nature Mater. 5, 605–613 (2006).

    Article  CAS  Google Scholar 

  15. Alves, H., Molinari, A. S., Xie, H. & Morpurgo, A. F. Metallic conduction at organic charge-transfer interfaces. Nature Mater. 7, 574–580 (2008).

    Article  CAS  Google Scholar 

  16. Nakano, M. et al. Small gap semiconducting organic charge-transfer interfaces. Appl. Phys. Lett. 96, 232102 (2010).

    Article  Google Scholar 

  17. Kronik, L. & Koch, N. Electronic properties of organic-based interfaces. Mater. Res. Soc. Bull. 35, 417–421 (2010).

    Article  Google Scholar 

  18. Soeda, J. et al. Solution-crystallized organic field-effect transistors with charge-acceptor layers: High-mobility and low-threshold voltage operation in air. Adv. Mater. 23, 3309–3314 (2011).

    Article  CAS  Google Scholar 

  19. Wang, H. & Yan, D. Organic heterostructures in organic field-effect transistors. NPG Asia Mater. 2, 69–78 (2010).

    Article  Google Scholar 

  20. Podzorov, V. et al. Intrinsic charge transport on the surface of organic semiconductors. Phys. Rev. Lett. 93, 086602 (2004).

    Article  CAS  Google Scholar 

  21. Molinari, A. S., Alves, H., Chen, Z., Facchetti, A. & Morpurgo, A. F. High electron mobility in vacuum and ambient for PDIF-CN2 single-crystal transistors. J. Am. Chem. Soc. 131, 2462–2463 (2009).

    Article  CAS  Google Scholar 

  22. Davies, J. H. The Physics of Low-Dimensional Semiconductors: An Introduction (Cambridge Univ. Press, 1998).

    Google Scholar 

  23. Sze, S. M. Physics of Semiconductor Devices 2nd edn (Wiley, 1981).

    Google Scholar 

  24. Kaji, T., Takenobu, T., Morpurgo, A. F. & Iwasa, Y. Organic single-crystal Schottky gate transistors. Adv. Mater. 21, 3689–3693 (2009).

    Article  CAS  Google Scholar 

  25. Lampart, M. A. & Mark, P. Current Injection in Solids (Academic, 1970).

    Google Scholar 

  26. Matsushima, T., Goushi, K. & Adachi, C. Charge-carrier injection characteristics at organic/organic heterojunction interfaces in organic light-emitting diodes. Chem. Phys. Lett. 435, 327–330 (2007).

    Article  CAS  Google Scholar 

  27. De Boer, R. W. I., Gershenson, M. E., Morpurgo, A. F. & Podzorov, V. Organic single-crystal field-effect transistors. Phys. Status Solidi A 201, 1302–1331 (2004).

    Article  CAS  Google Scholar 

  28. Krellner, C. et al. Density of bulk trap states in organic semiconductor crystals: Discrete levels induced by oxygen in rubrene. Phys. Rev. B 75, 245115 (2007).

    Article  Google Scholar 

  29. Minder, N., Ono, S., Facchetti, A. & Morpurgo, A. F. Band-like electron transport in organic transistors and implication of the molecular structure for performance optimization. Adv. Mater. 24, 503–508 (2012).

    Article  CAS  Google Scholar 

  30. Veres, J., Ogier, S. D., Leeming, S. W., Cupertino, D. C. & Khaffaf Mohialdin, S. Low- k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 13, 199–204 (2003).

    Article  CAS  Google Scholar 

  31. Stassen, A. F., de Boer, R.W. I., Iosad, N. N. & Morpurgo, A. F. Influence of the gate dielectric on the mobility of rubrene single-crystal field-effect transistors. Appl. Phys. Lett. 85, 3899–3901 (2004).

    Article  CAS  Google Scholar 

  32. Hulea, I. N. et al. Tunable Fröhlich polarons in organic single-crystal transistors. Nature Mater. 5, 982–986 (2006).

    Article  CAS  Google Scholar 

  33. Fratini, S. & Ciuchi, S. Bandlike motion and mobility saturation in organic molecular semiconductors. Phys. Rev. Lett. 103, 266601 (2009).

    Article  CAS  Google Scholar 

  34. Ellison, D. J., Lee, B., Podzorov, V. & Frisbie, C. D. Surface potential mapping of SAM-functionalized organic semiconductors by Kelvin probe force microscopy. Adv. Mater. 23, 502–507 (2011).

    Article  CAS  Google Scholar 

  35. Xie, H., Alves, H. & Morpurgo, A. F. Quantitative analysis of density-dependent transport in tetramethyltetraselenafulvalene single-crystal transistors: Intrinsic properties and trapping. Phys. Rev. B 80, 245305 (2009).

    Article  Google Scholar 

  36. Merlo, J. A. et al. P-channel organic semiconductors based on hybrid acene-thiophene molecules for thin-film transistor applications. J. Am. Chem. Soc. 127, 3997–4009 (2005).

    Article  CAS  Google Scholar 

  37. Troisi, A. & Orlandi, G. Charge-transport regime of crystalline organic semiconductors: Diffusion limited by thermal off-diagonal electronic disorder. Phys. Rev. Lett. 96, 086601 (2006).

    Article  Google Scholar 

  38. Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Caillier for his assistance during the SKFPM measurements and S. Ono, A. Ferreira and I. Crassee for assistance. This study was financially supported by MaNEP, the Swiss National Science Foundation, NEDO and the AFOSR (FA9550-08-01-0331).

Author information

Authors and Affiliations

Authors

Contributions

I.G.L. developed and fabricated the devices; performed electrical, Hall and SKFPM measurements; analysed the data and interpreted the results. M.N. fabricated and characterized the first un-gated rubrene/PDIF-CN2 charge-transfer interfaces. N.A.M. designed the Hall set-up and contributed to the electrical characterization. F.V.D.G. contributed to the device fabrication and to the electrical measurements. Z.C. and A.F. synthesized and provided the sample material from which the PDIF-CN2 single crystals were grown. A.F. also contributed to the writing of the manuscript. A.F.M. planned and supervised the work, interpreted the results and wrote the manuscript. All authors contributed to the scientific discussion of the results.

Corresponding author

Correspondence to Alberto F. Morpurgo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 893 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lezama, I., Nakano, M., Minder, N. et al. Single-crystal organic charge-transfer interfaces probed using Schottky-gated heterostructures. Nature Mater 11, 788–794 (2012). https://doi.org/10.1038/nmat3383

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3383

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing